LECTURE NOTES FOR 18.155, FALL 2004 99

16. SPECTRAL THEOREM

For a bounded operator T" on a Hilbert space we define the spectrum
as the set

(16.1) spec(T) ={z € C;T — zId is not invertible}.

Proposition 16.1. For any bounded linear operator on a Hilbert space
spec(T") C C is a compact subset of {|z| < ||T||}.

Proof. We show that the set C\ spec(T) (generally called the resolvent
set of T') is open and contains the complement of a sufficiently large

ball. This is based on the convergence of the Neumann series. Namely
if 7" is bounded and ||7'|| < 1 then

(16.2) (Id-T)""' = iTﬁ'

converges to a bounded operator which is a two-sided inverse of 1d —7".
Indeed, ||T7]| < ||T']] so the series is convergent and composing with
Id —T on either side gives a telescoping series reducing to the identity.
Applying this result, we first see that
(16.3) (T —2) = —2(Id-T/z)
is invertible if |z| > ||T'||. Similarly, if (T — zo) ™! exists for some zy, € C
then
(16.4) (T—2) = (T—20)—(2—2) = (T —2) " (Id —(2—20) (T —20) ™)
exists for |2 — 2| ||[(T — 20) 7Y < 1. O
In general it is rather difficult to precisely locate spec(7T').
However for a bounded self-adjoint operator it is easier. One sign of

this is the the norm of the operator has an alternative, simple, charac-
terization. Namely

(16.5) if A* = A then sup (A¢, o) = ||A]l.
llol=1

If a is this supermum, then clearly a < [|Al|. To see the converse, choose
any ¢, 1 € H with norm 1 and then replace ¥ by et with § chosen
so that (A¢, ) is real. Then use the polarization identity to write

(16.6) 4(Ad, v) = (A(¢ +¥), (0 + ) — (A(d = ¥), (¢ —¥))
+i(A(Q + i), (¢ +ih)) — i(A(d — i), (¢ — iW))).

Now, by the assumed reality we may drop the last two terms and see
that

(16.7) 4(Ad, ¥)| < alllo +¥[I* + llé — ¥lI*) = 2a(l|6]|* + [[4]*) = 4a.
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Thus indeed [|All = supj g —y=1 [{A0, V)| = a.

We can always subtract a real constant from A so that A’ = A — ¢
satisfies
(16.8) — inf (A'¢,¢) = sup (A'p, ¢) = | A.

ll¢l=1 llell=1

Then, it follows that A’ + || A’[| is not invertible. Indeed, there exists a
sequence ¢, with ||¢,|| = 1 such that ((A" — ||A’||)¢n, ¢n) — 0. Thus
(16.9)
HAZNAD G = —2( A6 S) A G P+ ANP < —2 A6, 602 4] 0.

This shows that A’ — || A’|| cannot be invertible and the same argument
works for A’ 4 ||A’||. For the original operator A if we set

(16.10) m = inf (A¢,¢) M = sup (A, @)
l[6ll=1 ll4]|=1

then we conclude that neither A —mId nor A — M Id is invertible and
Al = max(—m, M).

Proposition 16.2. If A is a bounded self-adjoint operator then, with
m and M defined by (16.10),

(16.11) {m}U{M} C spec(A) C [m, M].

Proof. We have already shown the first part, that m and M are in
the spectrum so it remains to show that A — z is invertible for all

z € C\ [m, M].
Using the self-adjointness
(16.12) Im((A — 2)p, ¢) = —Imz[|¢|*.

This implies that A — z is invertible if z € C \ R. First it shows that
(A—z)¢ = 0 implies ¢ = 0, so A — z is injective. Secondly, the range is
closed. Indeed, if (A — z)¢,, — 1 then applying (16.12) directly shows
that ||¢,|| is bounded and so can be replaced by a weakly convergent
subsequence. Applying (16.12) again to ¢, — ¢, shows that the se-
quence is actually Cauchy, hence convergens to ¢ so (A — z)¢ =1 is in
the range. Finally, the orthocomplement to this range is the null space
of A* — z, which is also trivial, so A — z is an isomorphism and (16.12)
also shows that the inverse is bounded, in fact

1

|Im 2|

(16.13) I(A =27l <

When z € R we can replace A by A’ satisfying (16.8). Then we have
to show that A" — z is inverible for |z| > ||A]|, but that is shown in the
proof of Proposition 16.1. O
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The basic estimate leading to the spectral theorem is:

Proposition 16.3. If A is a bounded self-adjoint operator and p is a
real polynomial in one variable,
N

(16.14) pt) = e, ex #0,
=0
N .
then p(A) = > ¢;A" satisfies
i=0
(16.15) Ip(A)] < sup [p(t)]-

te[m,M]

Proof. Clearly, p(A) is a bounded self-adjoint operator. If s ¢ p([m, M])
then p(A) — s is invertible. Indeed, the roots of p(¢) — s must cannot
lie in [m.M], since otherwise s € p([m, M]). Thus, factorizing p(s) — ¢
we have

(16.16)
p(t) —s=cn H(t —t:(s)), ti(s) & [m, M] = (p(A) — 5)~" exists

since p(A) = cn ZE— ti(s)) and each of the factors is invertible.

Thus spec(p(A)) C p([m, M]), which is an interval (or a point), and
from Proposition 16.3 we conclude that ||p(A)|| < sup p(|m, M]) which
is (16.15). 0

Now, reinterpreting (16.15) we have a linear map
(16.17) PR) > p+— p(A) € B(H)

from the real polynomials to the bounded self-adjoint operators which

is continuous with respect to the supremum norm on [m, M]. Since
polynomials are dense in continuous functions on finite intervals, we
see that (16.17) extends by continuity to a linear map

(16.18)

C([m, M]) > f — f(A) € BH), | F(A < [[fllm.ar), fg(A) = f(A)g(A)

where the multiplicativity follows by continuity together with the fact
that it is true for polynomials.

Now, consider any two elements ¢, € H. Evaluating f(A) on ¢ and
pairing with v gives a linear map

(16.19) C(fm, M]) 5 f — (f(A)6, 1) € C.

This is a linear functional on C([m, M]) to which we can apply the Riesz
representatin theorem and conclude that it is defined by integration
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against a unique Radon measure fi4 :

(16.20) (6.0 = [ fdo

[m, M]
The total mass |ug,| of this measure is the norm of the functional.
Since it is a Borel measure, we can take the integral on —oo, b] for any
b € R ad, with the uniqueness, this shows that we have a continuous

sesquilinear map
(16.21)

By(¢, ) - HxXH 3 (¢,¢) — dugy € R, |Bo(o, 9)| < [|A[l[[o]l[[ 4]

[m.,b]
From the Hilbert space Riesz representation theorem it follows that
this sesquilinear form defines, and is determined by, a bounded linear
operator

(16.22) Py(d,9) = (Pyd, ), [P < [IA]l-

In fact, from the functional calculus (the multiplicativity in (16.18))
we see that

(16.23) Py =P, B} =P, ||R] <1,
so B, is a projection.

Thus the spectral theorem gives us an increasing (with b) family of
commuting self-adjoint projections such that p 4 ((—00,b]) = (P, ¢)

determines the Radon measure for which (16.20) holds. One can go
further and think of P, itself as determining a measure

(16.24) p((=00,0]) = By

which takes values in the projections on H and which allows the func-
tions of A to be written as integrals in the form

(16.25) f(A) = [ L

of which (16.20) becomes the ‘weak form’. To do so one needs to
develop the theory of such measures and the corresponding integrals.
This is not so hard but I shall not do it.



