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11. DIFFERENTIAL OPERATORS.

In the last third of the course we will apply what we have learned
about distributions, and a little more, to understand properties of dif-
ferential operators with constant coefficients. Before I start talking
about these, I want to prove another density result.

So far we have not defined a topology on S’(R") — I will leave this
as an optional exercise.'® However we shall consider a notion of con-
vergence. Suppose u; € S'(R") is a sequence in S'(R"). It is said to
converge weakly to u € §'(R™) if

(11.1) ui(p) — u(p) Vo € S(R").

There is no ‘uniformity’ assumed here, it is rather like pointwise con-
vergence (except the linearity of the functions makes it seem stronger).

Proposition 11.1. The subspace S(R™) C S'(R") is weakly dense,
i.e., each u € §'(R™) is the weak limit of a subspace u; € S(R™).

Proof. We can use Schwartz representation theorem to write, for some
m depending on u,

u=(x)™" Z D%y, u, € L*(R").
|ao| <m

We know that S(R") is dense in L*(R"), in the sense of metric spaces
so we can find u, ; € S(R"), uy; — uq in L2(R™). The density result
then follows from the basic properties of weak convergence. O

Proposition 11.2. If u; — u and v} — u' weakly in S'(R") then
cuj — cu, uj+uy — utu', D%y — D% and (x)™u; — (x)™u weakly
in 8'(R™).
Proof. This follows by writing everyting in terms of pairings, for exam-
ple if p € S(R")
Du;(p) = u; (1)@ D) — u((~1) D) = D*u(yp).
U

This weak density shows that our definition of D;, and z,;x are
unique if we require Proposition 11.2 to hold.

We have discussed differentiation as an operator (meaning just a
linear map between spaces of function-like objects)

D;:S'(R") — S'(R").

18problem 34.
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Any polynomial on R"™
p&) =D Pal”, pa€C

ja<m
defines a differential operator®’
(11.2) p(D)u = Z PaDu .
la]<m

Before discussing any general theorems let me consider some exam-
ples.

(11.3) On R?, 9 = 3, + i, “d-bar operator”
(11.4) on R", A= Z D? “Laplacian”
j=1
(11.5) on R x R" = R"" D? — A“Wave operator”
(11.6) onR x R" = R*™ 9, + A“Heat operator”
(11.7) on R x R" = R"*'| D, + A“Schrédinger operator”

Functions, or distributions, satisfying du = 0 are said to be holo-
morphic, those satisfying Au = 0 are said to be harmonic.

Definition 11.3. An element E € 8'(R") satisfying
(11.8) P(D)E =0
is said to be a (tempered) fundamental solution of P(D).

Theorem 11.4 (without proof). Every non-zero constant coefficient
differential operator has a tempered fundamental solution.

This is quite hard to prove and not as interetsing as it might seem.
We will however give lots of examples, starting with 0. Consider the
function

1 SN
(11.9) E(z,y) = g-(e+iy) ™", (2,9) #0.
Lemma 11.5. E(x,y) is locally integrable and so defines E € S'(R?)
by
1
(1110)  B() = o [ (o in) eley) dudy.
2w R2

and E so defined is a tempered fundamental solution of 0.

YNMore correctly a partial differential operator with constant coefficients.
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Proof. Since (z+iy)~" is smooth and bounded away from the origin the
local integrability follows from the estimate, using polar coordinates,

@<t 2+l Jo Joooor

Differentiating directly in the region where it is smooth,

Op(r +iy) ' = —(x +iy) 2%, Oy(x +iy) " = —i(zx €iy) 2
so indeed, OF = 0 in (z,y) # 0.2
The derivative is really defined by
(11.12) (OE)(p) = E(-0p)
. 1 N
= lellrgl 5 \x|26(x +iy) dpdxdy.

ly|>e

Here I have cut the space {|z]| < €, |y| < €} out of the integral and used
the local integrability in taking the limit as e | 0. Integrating by parts
in x we find

_ |x|>6(x +iy) O dr dy = |x|>6(8z(m +iy) D dr dy
lyl>e lyl>e

o _@riw ey [ @rin) oo dy
lyl<e wi=e

There is a corrsponding formula for integration by parts in y so,
recalling that OE = 0 away from (0, 0),

(11.13) 2m0E(p) =

lim [ [(e+iy)o(e,y) — (—e+iy) ' o(—€y)ldy
EJ,O ‘ylge
+1 hl%l [(x +ie) to(x, €) — (z —ie) o(x, €)] dr,
€ |z|<e

assuming that both limits exist. Now, we can write

o(x,y) = ©(0,0) + x¢1 (1Y) + yba(z,y) .

Replacing ¢ by either xi); or yis in (11.13) both limits are zero. For
example

‘ /< (€+iy)—1e¢1(6,y)dy' < /|< |1D1| — 0.

20Thus at this stage we know OE must be a sum of derivatives of 4.
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Thus we get the same result in (11.13) by replacing ¢(z,y) by ¢(0,0).
Then 270E(p) = cp(0),

d d
c:lim26/ 27y2:lim< 7y2:27r.
€l0 ly|<e e~ + Y €l0 ly|<1 1 + Yy

O

Let me remind you that we have already discussed the convolution
of functions

uxv(r) = /u(x —y)u(y)dy = v *u(z).

This makes sense provided u is of slow growth and s € S(R™). In fact
we can rewrite the definition in terms of pairing

(11.14) (ux p)(x) = (u, p(x =)

where the - indicates the variable in the pairing.

Theorem 11.6 (Hormander, Theorem 4.1.1). If u € S'(R") and ¢ €
S(R™) then ux ¢ € S'(R™) NC>®(R™) and if supp(p) € R”

supp(u * ¢) C supp(u) + supp(¢p) .
For any multi-indezr «
D(ux*p) =D p=ux*xD%.
Proof. 1t ¢ € S(R™) then for any fixed z € R™,
pr—-) e S(R").
Indeed the seminorm estimates required are

sup(1 + |y[))¥/? |D*p(x — y)| < 0o ¥V o,k > 0.
v

Since D*yp(x —y) = (=1)*(D*p)(z — y) and
(L+[y") < L+ |z =y (L + [2f)
we conclude that
1L+ JyI*)* 2 D% (@ = )l < (14 )2 (9) Do (y) = -
The continuity of u € S'(R™) means that for some k

lu(p)| < C‘sm 1(y)* D¢ 1

so it follows that

(11.15) s p(a)] = [{u, oz — )] < C(L+ a2
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The argument above shows that x — @(z—-) is a continuous function
of x € R with values in S(R™), so u * ¢ is continuous and satisfies
(11.15). It is therefore an element of S'(R™).

Differentiability follows in the same way since for each j, with e; the
7th unit vector

+ P — —
platse; —y) —plz—y) S(R")
s

is continuous in x € R", s € R. Thus, u * ¢ has continuous partial
derivatives and

D]u*cp:u*chp
The same argument then shows that uxy € C*(R™). That D;(uxyp) =
Dju * ¢ follows from the definition of derivative of distributions

Dj(ux ¢(x)) = (u* Djp)(x)
= (u, Dy, p(x — y)) = —(u(y), Dy,e(z — y))y
= (Dju) * ¢.
Finally consider the support property. Here we are assuming that

supp(y) is compact; we also know that supp(u) is a closed set. We
have to show that

(11.16) Z ¢ supp(u) + supp(yp)
implies u * (2’) = 0 for 2/ near T. Now (11.16) just means that
(11.17) supp (T — -) Nsupp(u) = ¢,

Since supp p(z — ) = {y € R"; 2 — y € supp(p)}, so both statements
mean that there is no y € supp(y) with T—y € supp(u). This can also
be written

supp () Nsuppu(r — ) = ¢
and as we showed when discussing supports implies

uxp(x') = (ulx' —-),p) =0.
From (11.17) this is an open condition on z’, so the support property

follows.
]

Now suppose ¢, ¥ € S(R") and u € §'(R"). Then

(11.18) (ux@)xth=ux*(p*x1).
This is really Hormander’s Lemma 4.1.3 and Theorem 4.1.2; I ask you
to prove it as Problem 35.

We have shown that u * ¢ is C* if v € S'(R") and ¢ € S(R"),
i.e., the regularity of u * ¢ follows from the regularity of one of the
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factors. This makes it reasonable to expect that u x v can be defined
when v € §'(R"), v € §'(R") and one of them has compact support.
If v € C*(R") and ¢ € S(R") then

wio(e) = [ ()l = ela)do = [ {uC),o(o = )ig(-a) do
where ¢(z) = ¢p(—2z). In fact using Problem 35,
(11.19) uxv(p) = ((u*xv)*p)(0) = (ux*(vxp))0).
Here, v, ¢ are both smooth, but notice

Lemma 11.7. Ifv € §'(R") has compact support and ¢ € S(R™) then
v* e S(R™).

Proof. Since v € §'(R™) has compact support there exists x € C(R")
such that yv = v. Then

v p(x) = (xv) * p(x) = (xv(Y), P(T — Y))y
= (u(y), x(W)p(z —y))y -

Thus, for some k,

lv* o(z)| < Clix(y)er —y)ll k)

where || ||(x) is one of our norms on S(R™). Since x is supported in
some large ball,

Ix(y)e( —y)l k)

< sup ()" D% (x(9) o (z = v))]
< C sup sup [(D%)(z —y)|
WI<R |o|<k
< Cn sup (1+ [ —y[*) ™
ly|<R
< Cn(1 4 |z*)~N/2.

Thus (1 + |z|*)N/2 v * ¢| is bounded for each N. The same argument
applies to the derivative using Theorem 11.6, so

vxp e SR).
U

In fact we get a little more, since we see that for each k there exists
k" and C' (depending on k and v) such that

v @l < Clloll gy -
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This means that
vk : S(R") — S(R")
is a continuous linear map.
Now (11.19) allows us to define uxv when u € §’'(R") and v € §'(R")
has compact support by

uxv(p) =u* (v p)0).

Using the continuity above, I ask you to check that u v € S'(R") in
Problem 36. For the moment let me assume that this convolution has
the same properties as before — I ask you to check the main parts of
this in Problem 37.

Recall that £ € S'(R") is a fundamental situation for P(D), a con-
stant coefficient differential operator, if P(D)E = 6. We also use a
weaker notion.

Definition 11.8. A parametrix for a constant coefficient differential
operator P(D) is a distribution F € S'(R™) such that

(11.20) P(D)F =6+, ¢ € C*(R").

An operator P(D) is said to be hypoelliptic if it has a parametriz sat-
1sfying

(11.21) sing supp(F') C {0} ,

where for any u € S'(R™)

(11.22) (sing Smpp(u))E ={zeR" JpeCR"),
p(T) # 0,0u € C°(R™)} .

Since the same ¢ must work for nearby points in (11.22), the set
sing supp(u) is closed. Furthermore

(11.23) sing supp(u) C supp(u) .
As Problem 37 I ask you to show that if X' € R" and KNsing supp(u) =

¢ the 3 p € C°(R™) with ¢(x) = 1 in a neighbourhood of K such that
pu € CX(R™). In particular

(11.24) sing supp(u) = ¢ = u € S'(R")NC*(R").
Theorem 11.9. If P(D) is hypoelliptic then
(11.25) sing supp(u) = sing supp(P(D)u) V u € S'(R").

Proof. One half of this is true for any differential operator:

Lemma 11.10. Ifu € §'(R™) then for any polynomial
(11.26) sing supp(P(D)u) C singsupp(u) V u € S'(R").
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O

Proof. We must show that T ¢ singsupp(u) = T ¢ sing supp(P(D)u).
Now, if T ¢ sing supp(u) we can find ¢ € C°(R"), ¢ = 1 near T, such
that pu € C°(R™). Then

P(D)u= P(D)(pu+ (1 - p)u)
= P(D)(pu) + P(D)((1 - @)u) .
The first term is C* and T ¢ supp(P(D)((1—p)u)), so T ¢ sing supp(PD(D)u).

It remains to show the converse of (11.26) where P(D) is assumed to
be hypoelliptic. Take F', a parametrix for P(D) with sing suppu C {0}
and assume, or rather arrange, that F' have compact support. In fact
if T ¢ sing supp(P(D)u) we can arrange that

(supp(F) 4+ 7) Nsing supp(P(D)u) = ¢ .
Now P(D)F = 6 with ¢ € C®(R") so
u=90xu=(P(D)F)*u—1x*u.

Since ¥ * u € C* it suffices to show that z ¢ singsupp ((P(D)u) * f).

Take ¢ € C°(R™) with ¢f € C*, f = P(D)u but

(supp F'+ ) Nsupp(p) =0.
Then f = fi + fo, f1 = ¢f € C°(R™) so
f*F=fixF+ foxF

where f; % F' € C*°(R™) and T ¢ supp(fs * F'). It follows that T ¢
sing supp(u).
Ezample 11.1. If u is holomorphic on R", du = 0, then u € C*(R").

Recall from last time that a differential operator P(D) is said to be
hypoelliptic if there exists F' € §'(R™) with

(11.27) P(D)F — 6 € C*(R") and singsupp(F) C {0} .

The second condition here means that if ¢ € C°(R") and p(z) = 1in
|z| < eforsome e > 0 then (1—p)F € C*(R™). Since P(D)((1—p)F) €
C>(R™) we conclude that

P(D)(pF) -6 € CZ(R")

and we may well suppose that F', replaced now by ¢F', has compact
support. Last time I showed that

If P(D) is hypoelliptic and u € §'(R") then
sing supp(u) = sing supp(P(D)u) .
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I will remind you of the proof later.

First however I want to discuss the important notion of ellipticity.
Remember that P(D) is ‘really’ just a polynomial, called the charac-
teristic polynomaial

P()= ) Cat™.
|a|<m

It has the property
P(D)u(€) = P(€)a() ¥ u € S'(R").

This shows (if it isn’t already obvious) that we can remove P(§) from
P(D) thought of as an operator on S&'(R™).

We can think of inverting P(D) by dividing by P(£). This works
well provided P(§) # 0, for all £ € R™. An example of this is

PE =[P +1=>) +1.
j=1

However even the Laplacian, A = Z;LZI DJQ-, does not satisfy this rather
stringent condition.

It is reasonable to expect the top order derivatives to be the most
important. We therefore consider

Pu(§) = ) Cut®
|a|=m
the leading part, or principal symbol, of P(D).

Definition 11.11. A polynomial P(§), or P(D), is said to be elliptic
of order m provided P,,(§) # 0 for all 0 # £ € R".

So what I want to show today is

Theorem 11.12. Ewvery elliptic differential operator P(D) is hypoel-
liptic.

We want to find a parametriz for P(D); we already know that we
might as well suppose that F' has compact support. Taking the Fourier
transform of (11.27) we see that F' should satisfy

(11.28) PEF(&) =1+, ¥ € S(R™).

Here we use the fact that 1) € C*(R") C S(R"), so ¢ € S(R™) too.
First suppose that P(§) = P,,(§) is actually homogeneous of degree
m. Thus

Po(€) = €™ Pul6), €=¢/1€] , € #0.
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The assumption at ellipticity means that

(11.29) Pa(§) A0V €S ={£eRY ¢ =1} .
Since 8" is compact and P, is continuous

(11.30) Pm(g)) >C>0vEes,

for some constant C'. Using homogeneity
(11.31) Pm(E)‘ > CIE™,C>0v7EeR.

Now, to get F from (11.28) we want to divide by P,,(§) or multiply
by 1/P,,(£). The only problem with defining 1/P,,(¢) is at £ = 0. We
shall simply avoid this unfortunate point by choosing P € C°(R") as
before, with p(§) =1 in |¢| < 1.

Lemma 11.13. If P,,(§) is homogeneous of degree m and elliptic then
(1—9() o
11.32 Q(é) = —— 5 ¢ S/(R™
(1.3 © =t e s
is the Fourier transform of a parametriz for Py, (D), satisfying (11.27).

Proof. Clearly Q(&) is a continuous function and |Q(§)| < C(1+[¢]) ™ V& €
R" so @ € S'(R™). It therefore is the Fourier transform of some
F € §'(R"). Furthermore

—

P (D)F(€) = Pu(6)F = P, (6)Q(€)
=1-(§),
= Pu(D)F =6+, 0(€) = —p(€).

Since p € CX(R™) C S(R"), ¥ € S(R*) C C®°(R™). Thus F is a
parametrix for P,,(D). We still need to show the ‘hard part’ that

(11.33) sing supp(F') C {0} .
U

We can show (11.33) by considering the distributions 2*F. The idea
is that for |«| large, z® vanishes rather rapidly at the origin and this
should ‘weaken’ the singularity of F' there. In fact we shall show that

(11.34) 2®F € HeFm==YR") |a| >n+1—m.

If you recall, these Sobolev spaces are defined in terms of the Fourier
transform, namely we must show that

33/0‘?’ c <€>—|a\—m+n+1L2(Rn) ]
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Now z0F = (—1)'0“D°‘§ﬁ , so what we need to cinsider is the behaviour
of the derivatives of F', which is just Q(§) in (11.32).

Lemma 11.14. Let P(&) be a polynomial of degree m satisfying

(11.35) |P(&)] > CE|™ in €| > 1/C for some C >0,
then for some constants C.,

1
11.36 DY ——| < Co ™™ in ¢ > 1/C.
(11.36) pig| < Calé > 1

Proof. The estimate in (11.36) for o = 0 is just (11.35). To prove the
higher estimates that for each « there is a polynomial of degree at most
(m — 1) || such that

(11.37) pol ___Lal®)

P(&) (P&l
Once we know (11.37) we get (11.36) straight away since

1| Culefmr
P(&)| — ¢+l |€|m(1+|a|)

We can prove (11.37) by induction, since it is certainly true for o = 0.
Suppose it is true for |a| < k. To get the same identity for each [ with
|B] = k41 it is enough to differentiate one of the identities with |a| = k
once. Thus

1 1 DjLa(§) (14 |e))LaD,P(E)
DP —— = D;D* = - !
P(§) 7 P(§) P& (P(&))>+
Since Lg(€§) = P(£)D; L (&) — (1 + |a]) Lo (§)D; P(€) is a polynomial of
degree at most (m—1) |a|+m—1 = (m—1) |3| this proves the lemma.
U

Going backwards, observe that Q(§) = F}m;(% is smooth in |¢| < 1/C,
so (11.36) implies that

(11.38) IDQ(&)] < Ca(1+[g]) 1
= (6)'D°Q € L}R™) if £ —m — |a < —g ,

which certainly holds if ¢ = |a| + m —n — 1, giving (11.34). Now, by
Sobolev’s embedding theorem

*F € CF if |a|>n+1—m+k‘+g.
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In particular this means that if we choose p € C2°(R™) with 0 ¢ supp(u)
then for every k, p/ |z|** is smooth and
uk = Mzk 2| Fec¥* ™ (>n.
]
Thus pF' € C(R™) and this is what we wanted to show, sing supp(F') C
{0}
So now we have actually proved that P,,(D) is hypoelliptic if it is

elliptic. Rather than go through the proof again to make sure, let me
go on to the general case and in doing so review it.

Proof. Proof of theorem. We need to show that if P(£) is elliptic then
P(D) has a parametrix F' as in (11.27). From the discussion above the
ellipticity of P(&) implies (and is equivalent to)

|Pn(6)] > clé]™, ¢>0.

On the other hand
P(g) - Pm(g) - Z Caga
|a|<m
is a polynomial of degree at most m — 1, so
|P(&) = Pn(§)|2 < C"(1+ €)™
This means that id C' > 0 is large enough then in || > C, C'(1 +
€Nt < 5 1€1™, so
[P = |P(&)] = [P(§) — Pn(8)]
m m— c m
> e — L je = e
This means that P(&) itself satisfies the conditions of Lemma 11.14.

Thus if ¢ € C°(R™) is equal to 1 in a large enough ball then Q(zi) =
(1 —¢(&))/P(&) in C* and satisfies (11.36) which can be written

ID*Q(&)] < Ca(1 4 [¢])™ .

The discussion above now shows that defining F € &'(R") by F(£) =
Q(&) gives a solution to (11.27).
U

The last step in the proof is to show that if F' € S'(R™) has compact
support, and satisfies (11.27), then

ue SR, P(D)ue S'(R")NC®(R")
=u=Fx*(P(D)u) —¢*uecC?R").
Let me refine this result a little bit.



LECTURE NOTES FOR 18.155, FALL 2004 79

Proposition 11.15. If f € S'(R™) and p € §'(R™) has compact sup-
port then

sing supp(u * f) C sing supp(u) + sing supp(f).

Proof. We need to show that p ¢ singsupp(u) € singsupp(f) then
p ¢ sing supp(u * f). Once we can fix p, we might as well suppose that
f has compact support too. Indeed, choose a large ball B(R,0) so that

z ¢ B(0,R) = p ¢ supp(u) + B(0, R).

This is possible by the assumed boundedness of supp(u). Then choose
v € CX(R™) with ¢ =1 on B(0, R); it follows from Theorem L16.2, or
rather its extension to distributions, that ¢ ¢ supp(u(l — ¢)f), so we
can replace f by ¢ f, noting that sing supp(¢f) C sing supp(f). Now if
f has compact support we can choose compact neighbourhoods K1, K,
of sing supp(u) and sing supp(f) such that p ¢ K; + K,. Furthermore
we an decompose u = uj + us, f = fi + fo so that supp(u;) C Kj,
supp(f2) C Ky and us, fo € C*°(R"). It follows that

wx f=wuy* fi+ugx fot+urx fo+uzx fa.

Now, p ¢ supp(us * f1), by the support property of convolution and the
three other terms are C*, since at least one of the factors is C*°. Thus

p ¢ sing supp(u * f). O

The most important example of a differential operator which is hy-
poelliptic, but not elliptic, is the heat operator

(11.39) O+A=0,-) 0.

j=1
In fact the distribution

1 _ =l
(11.40) E(t,z) = @mt)n/? exp < yr ) t>0
0 t<0

is a fundamental solution. First we need to check that E is a distri-
bution. Certainly F is C* in t > 0. Moreover as t | 0 in z # 0 it
vanishes with all derivatives, so it is C* except at t = 0, x = 0. Since
it is clearly measurable we will check that it is locally integrable near
the origin, i.e.,

(11.41) Agtg E(t,x) dedt < o,

lz|<1
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since £ > 0. We can change variables, setting X = z/t'/2, so dr =
t"/2 dX and the integral becomes

X ?
dedt <
(4 n/2/ /X|<t , P )de >

Since F is actually bounded near infinity, it follows that £ € S'R™,
Blo)= [ Blo)eltr)drdt v o€ SR,
£>0

As before we want to compute
(11.42) (O + A)E(p) = E(—0rp + Ap)

= lim E(t,x)(—0p + Ap) dz dt.
€l Jeg  Jrn
First we check that (0; + A)E =0 in ¢t > 0, where it is a C*> function.
This is a straightforward computation:

o

OE=——"p4+ M g
! STRET>
1 2
E= E 2 E=—=F E
On, 9t % ot +4t2
= AE=—F+ |x|2E

2t 4t
Now we can integrate by parts in (11.42) to get
ol /e

(0 + A)E(p) = Lim - @(&@W dx .

Making the same change of variables as before, X = x/2£/2,

olal?
/2

As £ | 0 the integral here is bounded by the integrable function
Cexp(—|X[?), for some C' > 0, so by Lebesgue’s theorem of domi-
nated convergence, conveys to the integral of the limit. This is

|2 dx
p0.0)- [ e —0.0).

(0, + A)E(p) = lim (&, EV2X) dx .

R”

Thus
(O + A)E(p) = ¢(0,0) = (0 + A)E = 00,
so F is indeed a fundamental solution. Since it vanishes in ¢ < 0 it is
canned a forward fundamrntal solution.
Let’s see what we can use it for.
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Proposition 11.16. If f € S'R™ has compact support 3lu € S'R”
with supp(m) C {t > =T} for some T and

(11.43) (O + A)u= f in R".

Proof. Naturally we try u = E'x f. That it satisfies (11.43)follows from
the properties of convolution. Similarly if 7" is such that supp(f) C
{t > T} then

supp(u) C supp(f) + supp(E) C {t > T] .

So we need to show uniqueness. If uqy,us € S'R™ in two solutions of
(11.43) then their difference v = u; — ug satisfies the ‘homogeneous’
equation (0; + A)v = 0. Furthermore, v = 0 in ¢t < 7" for some 7".
Given any E € R choose p(t) € C*°(R) with ¢(¢t) = 0in ¢t > ¢ + 1,
©(t) =11in ¢t <t and consider

Eg:gp(t>E:F1+F2,

where F} = ¢ E; for some ¢ € C°R"™!), ¢ = 1 near 0. Thus F; has
comapct support and in fact F, € SR”. I ask you to check this last
statement as Problem L18.P1.

Anyway,

O+ A1+ F)=0+¢9eSR", ¢y=0t<t.
Now,
(O +A)Epxu)=0=u+p*u.

Since supp () C {¢ > ], the second tier here is supported in t > ¢
T'. Thus u =01in t < ¢+ T’, but t is arbitrary, so u = 0.

v

Notice that the assumption that v € S'R™ is not redundant in the
statement of the Proposition, if we allow “large” solutions they be-
come non-unique. Problem L18.P2 asks you to apply the fundamental
solution to solve the initial value problem for the heat operator.

Next we make similar use of the fundamental solution for Laplace’s
operator. If n > 3 the

(11.44) E=C,|z| "

is a fundamental solution. You should check that AE,, = 0 in z # 0
directly, I will show later that AFE, = ¢, for the appropriate choice of
C,, but you can do it directly, as in the case n = 3.

Theorem 11.17. If f € SR™ 3 lu € CPR" such that Au = f.
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Proof. Since convolution u = E x f € S'R” N C*R" is defined we
certainly get a solution to Au = f this way. We need to check that
u € Cg°R". First we know that A is hypoelliptic so we can decompose
E=FH+F, F ESan, supp I, € R"
and then Fy € C*R™. In fact we can see from (11.44) that
|D*Fy(x)| < Co(1 + |z]) 2o,

Now, Fi x f € SR", as we showed before, and continuing the integral
we see that

D%l < [D*Fy* f| + Cn(1+[a]) ™ ¥ N
< C(1+ |yl

Since n > 2 it follows that u € Cg°R".
So only the uniqueness remains. If there are two solutions, uq, us for
a given f then v = u; — uy € C§°R™ satisfies Av = 0. Since v € S'R"
we can take the Fourier transform and see that
xI*B(x) = 0 = supp () C {0} .
an earlier problem was to conclude from this that v =3, ., CaD*0
for some constants C,. This in turn implies that v is a polynomial.

However the only polynomials in CJR™ are identically 0. Thus v = 0
and uniqueness follows. 0



