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10. SOBOLEV EMBEDDING

The properties of Sobolev spaces are briefly discussed above. If m
is a positive integer then v € H™(R™) ‘means’ that u has up to m
derivatives in L?(R"). The question naturally arises as to the sense
in which these ‘weak’ derivatives correspond to old-fashioned ‘strong’
derivatives. Of course when m is not an integer it is a little harder
to imagine what these ‘fractional derivatives’ are. However the main
result is:

Theorem 10.1 (Sobolev embedding). If u € H™(R™) where m > n/2
then u € CJ(R™), i.e.,

(10.1) H™R™) C C3(R™), m >n/2.

Proof. By definition, u € H™(R™) means v € §'(R") and (§)™u(¢) €
L*(R™). Suppose first that v € S(R™). The Fourier inversion formula
shows that

(2m)" |u(x)| = '/eimle(g) d§’
: (/ ()P dg) " (Z o dg) 3

R

Now, if m > n/2 then the second integral is finite. Since the first
integral is the norm on H™(R™) we see that

(10.2) sﬂgp lu(z)] = ||lullpe < 2m) " ||ul|gm , m >n/2.

This is all for v € S(R™), but S(R") — H™(R") is dense. The
estimate (10.2) shows that if u; — w in H™(R"), with u; € S(R"),
then u; — o in CJ(R™). In fact v/ = u in §'(R") since u; — u in
L*(R") and u; — ' in CJ(R™) both imply that [ u;p converges, so

/u]«p—> ugpz/ u'eV peSRY).
Rn Rn n
U

Notice here the precise meaning of u = v/, u € H™(R") C L*(R"),
v € CJ(R™). When identifying v € L*(R™) with the corresponding
tempered distribution, the values on any set of measure zero ‘are lost’.
Thus as functions (10.1) means that each u € H™(R") has a represen-
tative v’ € CJ(R™).

We can extend this to higher derivatives by noting that
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Proposition 10.2. If u € H™(R"), m € R, then D®u € H™ l*/(R")
and

(10.3) D : H™(R") — H™ I*(R")

18 continuous.

Proof. First it is enough to show that each D; defines a continuous
linear map

(10.4) D;: H™(R") — H™ Y(R™) V j

since then (10.3) follows by composition.
If m € R then uw € H™(R") means 4 € (£)"™L*(R™). Since Dju =
& -4, and

[61(6) ™™ < Cuf) ™™ ¥m
we conclude that D;ju € H™ '(R™) and

I Djullm- < Cn [l -

Applying this result we see
Corollary 10.3. If k € Ny and m > § + k then
(10.5) H™(R™) C CF(R™).

Proof. 1If |a| < k, then D € H™*(R") C CJ(R"). Thus the ‘weak
derivatives” D®u are continuous. Still we have to check that this means
that u is itself k£ times continuously differentiable. In fact this again
follows from the density of S(R™) in H™(R™). The continuity in (10.3)
implies that if u; — w in H™(R"), m > % + k, then u; — «’ in CF(R™)
(using its completeness). However u = u’ as before, so u € CF(R").

U

In particular we see that

(10.6) H>*R") = (H™(R") C C*(R").

These functions are not in general Schwartz test functions.

Proposition 10.4. Schwartz space can be written in terms of weighted
Sobolev spaces

(10.7) SR") = (=) "H*R").

k
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Proof. This follows directly from (10.5) since the left side is contained
in
() (R") € S(R™).
k
i

Theorem 10.5 (Schwartz representation). Any tempered distribution
can be written in the form of a finite sum

(10.8) u = Z ¥ DPuyg , uap € Co(R™).

laj<m
1B]<m

or in the form
(10.9) u= Z DP(3%va5), vap € C(R™).

lo|<m
[B]<m

Thus every tempered distribution is a finite sum of derivatives of
continuous functions of poynomial growth.

Proof. Essentially by definition any v € S'(R™) is continuous with re-
spect to one of the norms |[(x)¥¢l||ck. From the Sobolev embedding
theorem we deduce that, with m > k + n/2,

(@) < Cll{z)*ellm ¥ ¢ € S(R).
This is the same as
[(2)Fu(e)| < Cllgllam ¥ € S(R™).
which shows that (x)~*u € H~™(R"), i.e., from Proposition 9.8,
(@) Fu=>" D, u, € L*(R").
la|<m
In fact, choose j > n/2 and consider v, € H’(R") defined by 0, =
(€)7Ii,. As in the proof of Proposition 9.14 we conclude that
uo = Y D%l 4, ul, , € HI(R") C CH(R").
1B1<j
Thus, 7
(10.10) u=(x)* > Dlv,, v, € CYR").
lyl<M
To get (10.9) we ‘commute’ the factor (x)* to the inside; since I have

not done such an argument carefully so far, let me do it as a lemma.

1TThis is probably the most useful form of the representation theorem!
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Lemma 10.6. For any v € Nj there are polynomials p, (x) of degrees
at most |y — a| such that

(x)*"DVv = Z D=« (paﬁ(x}k’m’alv) .
aly

Proof. In fact it is convenient to prove a more general result. Suppose
p is a polynomial of a degree at most j then there exist polynomials of
degrees at most j + |y — a| such that

10.11)  ple) Do = 3 D (o ()0l
a<ly
The lemma follows from this by taking p = 1.

Furthermore, the identity (10.11) is trivial when v = 0, and proceed-
ing by induction we can suppose it is known whenever |y| < L. Taking
|’7| =L+1,

DY =D,;D" |¥|=L.
Writing the identity for +' as
p<x>ka _ Z DV/_O/ (pa/ﬁ/ <x>k—2|71_a/|v>
a’<y/
we may differentiate with respect to x;. This gives
p(x)*D" = =D;(p(x)*) - D'

+ 3 Dl () E el 2y

o/ | <~

The first term on the right expands to
! 1 /
(—(Dyp) - (@)D" = ~kpay (1) 2D7"v)
7

We may apply the inductive hypothesis to each of these terms and
rewrite the result in the form (10.11); it is only necessary to check the

order of the polynomials, and recall that (z)? is a polynomial of degree
2. 0

Applying Lemma 10.6 to (10.10) gives (10.9), once negative powers
of (x) are absorbed into the continuous functions. Then (10.8) follows
from (10.9) and Leibniz’s formula. O



