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1. Continuous functions 

A the beginning I want to remind you of things I think you already 
know and then go on to show the direction the course will be taking. 
Let me first try to set the context. 

One basic notion I assume you are reasonably familiar with is that 
of a metric space ([5] p.9). This consists of a set, X, and a distance 
function 

d : X × X = X2 −∀ [0,⊂ ) , 

satisfying the following three axioms: 

i) d(x, y) = 0 ≤ x = y, (and d(x, y) → 0) 

(1.1)	 ii) d(x, y) = d(y, x) � x, y ≥ X 

iii) d(x, y) ⊃ d(x, z) + d(z, y) � x, y, z ≥ X. 

The basic theory of metric spaces deals with properties of subsets 
(open, closed, compact, connected), sequences (convergent, Cauchy) 
and maps (continuous) and the relationship between these notions. 
Let me just remind you of one such result. 

Proposition 1.1. A map f : X ∀ Y between metric spaces is con­

tinuous if and only if one of the three following equivalent conditions 
holds 

(1) f−1(O) ∃ X is open � O ∃ Y open. 
(2) f−1(C) ∃ X is closed � C ∃ Y closed. 
(3) limn�∗ f(xn) = f(x) in Y if xn ∀ x in X. 

The basic example of a metric space is Euclidean space. Real n-
dimensional Euclidean space, Rn, is the set of ordered n-tuples of real 
numbers 

x = (x1, . . . , xn) ≥ Rn , xj ≥ R , j = 1, . . . , n . 

It is also the basic example of a vector (or linear) space with the oper­
ations 

x + y = (x1 + y1, x2 + y2, . . . , xn + yn) 

cx = (cx1, . . . , cxn) . 

The metric is usually taken to be given by the Euclidean metric 
n 

2 2 2| x| = (x1 + · · · + xn)1/2 = ( xj )
1/2 , 

j=1 

in the sense that 
d(x, y) = | x − y| . 
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Let us abstract this immediately to the notion of a normed vector 
space, or normed space. This is a vector space V (over R or C) equipped 
with a norm, which is to say a function 

⇒ ⇒ : V −∀ [0, ⊂) 

satisfying 

i) ⇒v⇒ = 0 ∞⇔ v = 0, 

(1.2) ii) ⇒cv⇒ = |c| ⇒v⇒ � c ≥ K, 

iii) ⇒v + w⇒ ⊃ ⇒v⇒ + ⇒w⇒. 

This means that (V, d), d(v, w) = ⇒v − w⇒ is a vector space; I am also 
using K to denote either R or C as is appropriate. 

The case of a finite dimensional normed space is not very interesting 
because, apart from the dimension, they are all “the same”. We shall 
say (in general) that two norms ⇒ • ⇒1 and ⇒ • ⇒2 on V are equivalent 
of there exists C > 0 such that 

1 
⇒v⇒1 ⊃ ⇒v⇒2 ⊃ C⇒v⇒1 � v ≥ V . 

C 

Proposition 1.2. Any two norms on a finite dimensional vector space 
are equivalent. 

So, we are mainly interested in the infinite dimensional case. I will 
start the course, in a slightly unorthodox manner, by concentrating on 
one such normed space (really one class). Let X be a metric space. 
The case of a continuous function, f : X ∀ R (or C) is a special case 
of Proposition 1.1 above. We then define 

C(X) = {f : X ∀ R, f bounded and continuous} . 

In fact the same notation is generally used for the space of complex-
valued functions. If we want to distinguish between these two possi­
bilities we can use the more pedantic notation C(X; R) and C(X; C). 
Now, the ‘obvious’ norm on this linear space is the supremum (or ‘uni­
form’) norm 

⇒f⇒∗ = sup |f(x)| . 
x→X 

Here X is an arbitrary metric space. For the moment X is sup­
posed to be a “physical” space, something like Rn . Corresponding to 
the finite-dimensionality of Rn we often assume (or demand) that X 
is locally compact. This just means that every point has a compact 
neighborhood, i.e., is in the interior of a compact set. Whether locally 
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compact or not we can consider 

(1.3) C0(X) = f ≥ C(X); � � > 0 � K 
 Xs.t. sup |f(x)| ⊃ � . 
x/→K 

Here the notation K 
 X means ‘K is a compact subset of X’. 
If V is a normed linear space we are particularly interested in the 

continuous linear functionals on V . Here ‘functional’ just means func­
tion but V is allowed to be ‘large’ (not like Rn) so ‘functional’ is used 
for historical reasons. 

Proposition 1.3. The following are equivalent conditions on a linear 
functional u : V −∀ R on a normed space V . 

(1) u is continuous. 
(2) u is continuous at 0. 
(3) {u(f) ≥ R ; f ≥ V , ⇒f⇒ ⊃ 1} is bounded. 
(4) � C s.t. |u(f)| ⊃ C⇒f⇒ � f ≥ V . 

Proof. (1) =⇔ (2) by definition. Then (2) implies that u−1(−1, 1) is 
a neighborhood of 0 ≥ V , so for some � > 0, u({f ≥ V ; ⇒f⇒ < �}) ∃ 

1(−1, 1). By linearity of u, u({f ≥ V ; ⇒f⇒ < 1}) ∃ (− 1 
�
, 

�
) is bounded, 

so (2) =⇔ (3). Then (3) implies that 

|u(f)| ⊃ C � f ≥ V, ⇒f⇒ ⊃ 1 

for some C. Again using linearity of u, if f ⇐= 0, 

f 
|u(f)| ⊃ ⇒f⇒u 

⇒f⇒ 
⊃ C⇒f⇒ , 

giving (4). Finally, assuming (4), 

|u(f) − u(g)| = |u(f − g)| ⊃ C⇒f − g⇒ 

shows that u is continuous at any point g ≥ V . � 

In view of this identification, continuous linear functionals are often 
said to be bounded. One of the important ideas that we shall exploit 
later is that of ‘duality’. In particular this suggests that it is a good 
idea to examine the totality of bounded linear functionals on V . The 
dual space is 

V ∞ = V � = {u : V −∀ K , linear and bounded} . 

This is also a normed linear space where the linear operations are 

(u + v)(f) = u(f) + v(f)
(1.4) � f ≥ V. 

(cu)(f) = c(u(f)) 
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The natural norm on V ∞ is 

⇒u⇒ = sup |u(f )|. 
≤f ≤�1 

This is just the ‘best constant’ in the boundedness estimate, 

⇒u⇒ = inf {C; |u(f )| ⊃ C⇒f ⇒ � f ∃ V } . 

One of the basic questions I wish to pursue in the first part of the 
course is: What is the dual of C0(X) for a locally compact metric space 
X? The answer is given by Riesz’ representation theorem, in terms of 
(Borel) measures. 

Let me give you a vague picture of ‘regularity of functions’ which 
is what this course is about, even though I have not introduced most 
of these spaces yet. Smooth functions (and small spaces) are towards 
the top. Duality flips up and down and as we shall see L2 , the space 
of Lebesgue square-integrable functions, is generally ‘in the middle’. 
What I will discuss first is the right side of the diagramme, where we 
have the space of continuous functions on Rn which vanish at infinity 
and its dual space, Mfin(R

n), the space of finite Borel measures. There 
are many other spaces that you may encounter, here I only include test 
functions, Schwartz functions, Sobolev spaces and their duals; k is a 
general positive integer. 

(1.5) S(Rn) � � 

Hk(Rn) Cc(R
n) � � �� C0(R

n)
� � 

��� � � 
� � 

L2(Rb)
� � �

�
� 

� 

M (Rn) �� �
H−k(Rn) � Mfin(R

n) 

S ∞ (Rn). 

I have set the goal of understanding the dual space Mfin(R
n) of C0(X), 

where X is a locally compact metric space. This will force me to go 
through the elements of measure theory and Lebesgue integration. It 
does require a little forcing! 

The basic case of interest is Rn . Then an obvious example of a con­
tinuous linear functional on C0(R

n) is given by Riemann integration, 



� 

6 RICHARD B. MELROSE 

for instance over the unit cube [0, 1]n: 

u(f) = f(x) dx . 
[0,1]n 

In some sense we must show that all continuous linear functionals 
on C0(X) are given by integration. However, we have to interpret 
integration somewhat widely since there are also evaluation functionals. 
If z ≥ X consider the Dirac delta 

�z (f) = f(z) . 

This is also called a point mass of z. So we need a theory of measure 
and integration wide enough to include both of these cases. 

One special feature of C0(X), compared to general normed spaces, is 
that there is a notion of positivity for its elements. Thus f → 0 just 
means f(x) → 0 � x ≥ X. 

Lemma 1.4. Each f ≥ C0(X) can be decomposed uniquely as the dif­
ference of its positive and negative parts 

(1.6) f = f+ − f− , f± ≥ C0(X) , f±(x) ⊃ |f(x)| � x ≥ X . 

Proof. Simply define 


 

f±(x) = 
±f(x) 

0 
if 
if 

±f(x) → 0 
±f(x) < 0 

for the same sign throughout. Then (1.6) holds. Observe that f+ is 
continuous at each y ≥ X since, with U an appropriate neighborhood 
of y, in each case 

f(y) > 0 =⇔ f(x) > 0 for x ≥ U =⇔ f+ = f in U 

f(y) < 0 =⇔ f(x) < 0 for x ≥ U =⇔ f+ = 0 in U 

f(y) = 0 =⇔ given � > 0 � U s.t. |f(x)| < � in U 

=⇔ |f+(x)| < � in U . 

Thus f− = f−f+ ≥ C0(X), since both f+ and f− vanish at infinity. � 

We can similarly split elements of the dual space into positive and 
negative parts although it is a little bit more delicate. We say that 
u ≥ (C0(X))∞ is positive if 

(1.7)	 u(f) → 0 � 0 ⊃ f ≥ C0(X) . 

For a general (real) u ≥ (C0(X))∞ and for each 0 ⊃ f ≥ C0(X) set 

(1.8) u+(f) = sup {u(g) ; g ≥ C0(X) , 0 ⊃ g(x) ⊃ f(x) � x ≥ X} . 
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This is certainly finite since u(g) ⊃ C⇒g⇒∗ ⊃ C⇒f⇒∗. Moreover, if 
0 < c ≥ R then u+(cf) = cu+(f) by inspection. Suppose 0 ⊃ fi ≥ 
C0(X) for i = 1, 2. Then given � > 0 there exist gi ≥ C0(X) with 
0 ⊃ gi(x) ⊃ fi(x) and 

u+(fi) ⊃ u(gi) + � . 

It follows that 0 ⊃ g(x) ⊃ f1(x) + f2(x) if g = g1 + g2 so 

u+(f1 + f2) → u(g) = u(g1) + u(g2) → u+(f1) + u+(f2) − 2� . 

Thus 
u+(f1 + f2) → u+(f1) + u+(f2). 

Conversely, if 0 ⊃ g(x) ⊃ f1(x) + f2(x) set g1(x) = min(g, f1) ≥ 
C0(X) and g2 = g − g1. Then 0 ⊃ gi ⊃ fi and u+(f1) + u+(f2) → 
u(g1) + u(g2) = u(g). Taking the supremum over g, u+(f1 + f2) ⊃ 
u+(f1) + u+(f2), so we find 

(1.9) u+(f1 + f2) = u+(f1) + u+(f2) . 

Having shown this effective linearity on the positive functions we can 
obtain a linear functional by setting 

u

f

(1.10) u+(f) = u+(f+) − u+(f−) � f ≥ C0(X) . 

Note that (1.9) shows that u+(f) = u+(f1) − u+(f2) for any decom­
posiiton of f = f1 −f2 with fi ≥ C0(X), both positive. [Since f1 + f− = 

2 + f+ so u+(f1) + u+(f−) = u+(f2) + u+(f+).] Moreover, 

|u+(f)| ⊃ max(u+(f+), u(f−)) ⊃ ⇒u⇒ ⇒f⇒∗ 

=⇔ ⇒u+⇒ ⊃ ⇒u⇒ . 

The functional 
− = u+ − u 

is also positive, since u+(f) → u(f) for all 0 ⊃ f ≥ C0(x). Thus we 
have proved 

Lemma 1.5. Any element u ≥ (C0(X))∞ can be decomposed, 

u = u+ − u− 

into the difference of positive elements with 

⇒u+⇒ , ⇒u−⇒ ⊃ ⇒u⇒ . 

The idea behind the definition of u+ is that u itself is, more or less, 
“integration against a function” (even though we do not know how to 
interpret this yet). In defining u+ from u we are effectively throwing 
away the negative part of that ‘function.’ The next step is to show that 
a positive functional corresponds to a ‘measure’ meaning a function 
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measuring the size of sets. To define this we really want to evaluate u 
on the characteristic function of a set 



 
1 if x ≥ E 

�E (x) = 
0 if x /≥ E . 

The problem is that �E is not continuous. Instead we use an idea 
similar to (1.8). 

If 0 ⊃ u ≥ (C0(X))∞ and U ∃ X is open, set1 

(1.11) µ(U) = sup {u(f) ; 0 ⊃ f(x) ⊃ 1, f ≥ C0(X) , supp(f) 
 U} . 

Here the support of f , supp(f), is the closure of the set of points where 
f(x) ⇐= 0. Thus supp(f) is always closed, in (1.11) we only admit f if 
its support is a compact subset of U. The reason for this is that, only 
then do we ‘really know’ that f ≥ C0(X). 

Suppose we try to measure general sets in this way. We can do this 
by defining 

(1.12) µ �(E) = inf {µ(U) ; U � E , U open} . 

Already with µ it may happen that µ(U) = ⊂, so we think of 

(1.13) µ � : P(X) ∀ [0,⊂] 

as defined on the power set of X and taking values in the extended 
positive real numbers. 

Definition 1.6. A positive extended function, µ� , defined on the power 
set of X is called an outer measure if µ�(∈) = 0, µ�(A) ⊃ µ (B) 
whenever A ∃ B and 

� � 
(1.14) µ �( Aj ) ⊃ µ(Aj ) � ∗ ∃ P(X) .{Aj }j=1 

j j 

Lemma 1.7. If u is a positive continuous linear functional on C0(X) 
then µ�, defined by (1.11), (1.12) is an outer measure. 

To prove this we need to find enough continuous functions. I have 
relegated the proof of the following result to Problem 2. 

Lemma 1.8. Suppose Ui, i = 1, . . . , N is ,a finite collection of open sets 
in a locally compact metric space and K 
 

�N Ui is a compact subset, i=1 
then there exist continuous functions fi ≥ C(X) with 0 ⊃ fi ⊃ 1, 
supp(fi) 
 Ui and 

(1.15) fi = 1 in a neighborhood of K . 
i 

1See [5] starting p.42 or [1] starting p.206. 
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Proof of Lemma 1.7. We have to prove (1.14). Suppose first that the 
Ai are open, then so is A = Ai. If f ≥ C(X) and supp(f ) 
 A theni 
supp(f ) is covered by a finite union of the Ais. Applying Lemma 1.8 we 
can find fi’s, all but a finite number identically zero, so supp(fi) 
 Ai 

and i fi = 1 in a neighborhood of supp(f ). 
Since f = i fif we conclude that 

u(f ) = u(fif ) =⇔ µ �(A) ⊃ µ (Ai) 
i i 

since 0 ⊃ fif ⊃ 1 and supp(fif ) 
 Ai. 

A
Thus (1.14) holds when the Ai are open. In the general case if 

i ∃ Bi with the Bi open then, from the definition, 
� � � 

µ ( Ai) ⊃ µ �( Bi) ⊃ µ (Bi) . 
i i i 

Taking the infimum over the Bi gives (1.14) in general. � 


