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Introduction 

These notes are for the course the graduate analysis course (18.155) 
at MIT in Fall 2004. They are based on earlier notes for similar courses 
in 1997, 2001 and 2002. In giving the lectures I may cut some corners! 

I wish to particularly thank Austin Frakt for many comments on, 
and corrections to, an earlier version of these notes. Others who made 
helpful comments or noted errors include Philip Dorrell, .... 

1 



� 

2 RICHARD B. MELROSE 

1. Continuous functions 

A the beginning I want to remind you of things I think you already 
know and then go on to show the direction the course will be taking. 
Let me first try to set the context. 

One basic notion I assume you are reasonably familiar with is that 
of a metric space ([5] p.9). This consists of a set, X, and a distance 
function 

d : X ×X = X2 −→ [0,∞) , 

satisfying the following three	axioms: 

i) d(x, y) = 0 ⇔ x = y, (and d(x, y) ≥ 0) 

(1.1)	 ii) d(x, y) = d(y, x) ∀ x, y ∈ X 

iii) d(x, y) ≤ d(x, z) + d(z, y) ∀ x, y, z ∈ X. 

The basic theory of metric spaces deals with properties of subsets 
(open, closed, compact, connected), sequences (convergent, Cauchy) 
and maps (continuous) and the relationship between these notions. 
Let me just remind you of one such result. 

Proposition 1.1. A map f : X → Y between metric spaces is con­
tinuous if and only if one of the three following equivalent conditions 
holds 

(1) f−1(O) ⊂ X is open ∀ O ⊂ Y open. 
(2) f−1(C) ⊂ X is closed ∀ C ⊂ Y closed. 
(3) limn→∞ f(xn) = f(x) in Y if x x in X.n → 

The basic example of a metric space is Euclidean space. Real n­
dimensional Euclidean space, Rn, is the set of ordered n­tuples of real 
numbers 

x = (x1, . . . , xn) ∈ Rn , xj ∈ R , j = 1, . . . , n . 

It is also the basic example of a vector (or linear) space with the oper­
ations 

x+ y = (x1 + y1, x2 + y2, . . . , xn + yn) 

cx = (cx1, . . . , cxn) . 

The metric is usually taken to be given by the Euclidean metric 
n

2 2 2|x| = (x1 + · · ·+ xn)
1/2 = ( xj)

1/2 , 
j=1 

in the sense that 

d(x, y) = x− y .| | 
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Let us abstract this immediately to the notion of a normed vector 
space, or normed space. This is a vector space V (over R or C) equipped 
with a norm, which is to say a function 

→ [0,∞)� � : V −

satisfying 

i) �v� = 0 v = 0,⇐⇒
(1.2) ii) �cv� = c| | �v� ∀ c ∈ K, 

iii) �v + .v�+ �w�w� ≤ �

This means that (V, d), d(v, w) = v − w� is a vector space; I am also 
using K to denote either R or C as is appropriate. 

The case of a finite dimensional normed space is not very interesting 
because, apart from the dimension, they are all “the same”. We shall 
say (in general) that two norms � • � 2 on V are equivalent 1 and � • �
of there exists C > 0 such that 

1 
.v� v�2 ≤ C�v�1 ∀ v ∈ V 

C
� 1 ≤ �

Proposition 1.2. Any two norms on a finite dimensional vector space 
are equivalent. 

So, we are mainly interested in the infinite dimensional case. I will 
start the course, in a slightly unorthodox manner, by concentrating on 
one such normed space (really one class). Let X be a metric space. 
The case of a continuous function, f : X R (or C) is a special case→
of Proposition 1.1 above. We then define 

C(X) = {f : X → R, f bounded and continuous} . 

In fact the same notation is generally used for the space of complex­
valued functions. If we want to distinguish between these two possi­
bilities we can use the more pedantic notation C(X; R) and C(X; C). 
Now, the ‘obvious’ norm on this linear space is the supremum (or ‘uni­
form’) norm 

= sup f(x)| .�f�∞ 
x∈X 
|

Here X is an arbitrary metric space. For the moment X is sup­
posed to be a “physical” space, something like Rn . Corresponding to 
the finite­dimensionality of Rn we often assume (or demand) that X 
is locally compact. This just means that every point has a compact 
neighborhood, i.e., is in the interior of a compact set. Whether locally 
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compact or not we can consider 

(1.3) 0(X) = f ∈ C(X); ∀ � > 0 ∃ K � Xs.t. sup f(x) .C
∈Kx/

| | ≤ � 

Here the notation K � X means ‘K is a compact subset of X’. 
If V is a normed linear space we are particularly interested in the 

continuous linear functionals on V . Here ‘functional’ just means func­
tion but V is allowed to be ‘large’ (not like Rn) so ‘functional’ is used 
for historical reasons. 

Proposition 1.3. The following are equivalent conditions on a linear 
functional u : V − R on a normed space V .→

(1) u is continuous. 
(2) u is continuous at 0. 
(3) {u(f) ∈ R ; f ∈ V , �f� ≤ 1} is bounded. 
(4) ∃ C s.t. u(f) .| | ≤ C�f� ∀ f ∈ V 

Proof. (1) = ⇒ (2) by definition. Then (2) implies that u−1(−1, 1) is 
a neighborhood of 0 ∈ V , so for some � > 0, u({f ∈ V ; �f� < �}) ⊂
(−1, 1). By linearity of u, u({f ∈ V ; �f� < 1}) ⊂ (−
so (2) = ⇒ (3). Then (3) implies that 

u(f)| ≤ C ∀ f ∈ V, �f� ≤ 1|

for some C. Again using linearity of u, if f = 0, 

f 
u(f)| ≤ �f�u|

�f�
≤ C�f� , 

giving (4). Finally, assuming (4), 

1) is bounded, 
�

1 ,
�

u(f)− u(g) = u(f − g)| | | | ≤ C�f − g� 

shows that u is continuous at any point g ∈ V . � 

In view of this identification, continuous linear functionals are often 
said to be bounded. One of the important ideas that we shall exploit 
later is that of ‘duality’. In particular this suggests that it is a good 
idea to examine the totality of bounded linear functionals on V . The 
dual space is 

V � = V ∗ = u : V −→ K , linear and bounded} .{

This is also a normed linear space where the linear operations are 

(u + v)(f) = u(f) + v(f)
(1.4) 

(cu)(f) = c(u(f)) 
∀ f ∈ V. 
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The natural norm on V � is 

u� = sup u(f)|.|�
�f�≤1 

This is just the ‘best constant’ in the boundedness estimate, 

u� = inf {C; u(f)� | | ≤ C�f� ∀ f ⊂ V } . 
One of the basic questions I wish to pursue in the first part of the 

course is: What is the dual of C0(X) for a locally compact metric space 
X? The answer is given by Riesz’ representation theorem, in terms of 
(Borel) measures. 

Let me give you a vague picture of ‘regularity of functions’ which 
is what this course is about, even though I have not introduced most 
of these spaces yet. Smooth functions (and small spaces) are towards 
the top. Duality flips up and down and as we shall see L2 , the space 
of Lebesgue square­integrable functions, is generally ‘in the middle’. 
What I will discuss first is the right side of the diagramme, where we 
have the space of continuous functions on Rn which vanish at infinity 
and its dual space, Mfin(Rn), the space of finite Borel measures. There 
are many other spaces that you may encounter, here I only include test 
functions, Schwartz functions, Sobolev spaces and their duals; k is a 
general positive integer. 

(1.5) S(Rn) � w 
� _ UUUUUUUUUUUUUUUUUUUUUU�� **

�Hk(Rn) C
k c
(Rn)

� // C0(Rn)
� � __ ss K sssssss�� yys

L2(Rb)� s� _ KKKKKKKKKK�� %% ��
_M(Rn) ooH−k(Rn) ? Mfin (Rn)

� _ G g 

iiiiiiiiiiiiiiiiiiii 

�� tt
S �(Rn). 

I have set the goal of understanding the dual space Mfin(Rn) of C0(X), 
where X is a locally compact metric space. This will force me to go 
through the elements of measure theory and Lebesgue integration. It 
does require a little forcing! 

The basic case of interest is Rn . Then an obvious example of a con­
tinuous linear functional on C0(Rn) is given by Riemann integration, 
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for instance over the unit cube [0, 1]n: 

u(f) = f(x) dx . 
[0,1]n 

In some sense we must show that all continuous linear functionals 
on 0(X) are given by integration. However, we have to interpret C
integration somewhat widely since there are also evaluation functionals. 
If z ∈ X consider the Dirac delta 

δz(f) = f(z) . 

This is also called a point mass of z. So we need a theory of measure 
and integration wide enough to include both of these cases. 

One special feature of C0(X), compared to general normed spaces, is 
that there is a notion of positivity for its elements. Thus f ≥ 0 just 
means f(x) ≥ 0 ∀ x ∈ X. 

Lemma 1.4. Each f ∈ C0(X) can be decomposed uniquely as the dif­
ference of its positive and negative parts 

(1.6) f = f+ − f− , f± ∈ C0(X) , f±(x f(x)| ∀ x ∈ X . ) ≤ |

Proof. Simply define 

f±(x) = 
±f(x) if ±f(x) ≥ 0 

0 if ±f(x) < 0 

for the same sign throughout. Then (1.6) holds. Observe that f+ is 
continuous at each y ∈ X since, with U an appropriate neighborhood 
of y, in each case 

f(y) > 0 = ⇒ f(x) > 0 for x ∈ U = f+ = f in U⇒

f(y) < 0 = ⇒ f(x) < 0 for x ∈ U = f+ = 0 in U⇒

f(y) = 0 = ⇒ given � > 0 ∃ U s.t. f(x)| < � in U|

= f+(x)| < � in U . ⇒ |

Thus f = f−f 0(X), since both f+ and f− vanish at infinity. �− + ∈ C

We can similarly split elements of the dual space into positive and 
negative parts although it is a little bit more delicate. We say that 

0(X))� is positive if u ∈ (C
(1.7) u(f) ≥ 0 ∀ 0 ≤ f ∈ C0(X) . 

For a general (real) u ∈ (C0(X))� and for each 0 ≤ f ∈ C0(X) set 

(1.8) u+(f) = sup {u(g) ; 0(X) , 0 ≤ g(x) ≤ f(x) ∀ x ∈ X} .g ∈ C
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This is certainly finite since u(g) ≤ C�g�∞ ≤ C�f�∞. Moreover, if 
0 < c ∈ R then u+(cf) = cu+(f) by inspection. Suppose 0 ≤ fi ∈ 

0(X) for i = 1, 2. Then given � > 0 there exist 0(X) withC gi ∈ C
0 ≤ gi(x) ≤ fi(x) and 

u+(fi) ≤ u(gi) + � . 

It follows that 0 ≤ g(x) ≤ f1(x) + f2(x) if g = g1 + g2 so 

u+(f1 + f2) ≥ u(g) = u(g1) + u(g2) ≥ u+(f1) + u+(f2)− 2� . 

Thus 
u+(f1 + f2) ≥ u+(f1) + u+(f2). 

Conversely, if 0 ≤ g(x) ≤ f1(x) + f2(x) set g1(x) = min(g, f1) ∈ 
0(X) and g2 = g − g1. Then 0 ≤ gi ≤ fi and u+(f1) + u+(f2) ≥C
u(g1) + u(g2) = u(g). Taking the supremum over g, u+(f1 + f2) ≤ 
u+(f1) + u+(f2), so we find 

(1.9) u+(f1 + f2) = u+(f1) + u+(f2) . 

Having shown this effective linearity on the positive functions we can 
obtain a linear functional by setting 

(1.10) u+(f) = u+(f+)− u+(f 0(X) .−) ∀ f ∈ C
Note that (1.9) shows that u+(f) = u+(f1) − u+(f2) for any decom­
posiiton of f = f1 −f2 with fi ∈ C0(X), both positive. [Since f1 +f = −
f2 + f+ so u+(f1) + u+(f−) = u+(f2) + u+(f+).] Moreover, 

u+(f) ≤ max(u+(f+), u(f| | −)) ≤ �u� �f�∞ 

= u� .⇒ �u+� ≤ �
The functional 

u = u+ − u− 

is also positive, since u+(f) ≥ u(f) for all 0 ≤ f ∈ C0(x). Thus we 
have proved 

Lemma 1.5. Any element u ∈ (C0(X))� can be decomposed, 

u = u+ − u− 

into the difference of positive elements with 

u u� .u+� , �� −� ≤ �

The idea behind the definition of u+ is that u itself is, more or less, 
“integration against a function” (even though we do not know how to 
interpret this yet). In defining u+ from u we are effectively throwing 
away the negative part of that ‘function.’ The next step is to show that 
a positive functional corresponds to a ‘measure’ meaning a function 
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measuring the size of sets. To define this we really want to evaluate u 
on the characteristic function of a set 

χE(x) =
1 if x ∈ E 
0 if x /∈ E . 

The problem is that χE is not continuous. Instead we use an idea 
similar to (1.8). 

If 0 ≤ u ∈ (C0(X))� and U ⊂ X is open, set1 

(1.11) µ(U) = sup {u(f) ; 0 ≤ f(x) ≤ 1, f ∈ C0(X) , supp(f) � U} . 
Here the support of f , supp(f), is the closure of the set of points where 
f(x) = 0. Thus supp(f) is always closed, in (1.11) we only admit f if 
its support is a compact subset of U. The reason for this is that, only 
then do we ‘really know’ that f ∈ C0(X). 

Suppose we try to measure general sets in this way. We can do this 
by defining 

(1.12) µ∗(E) = inf {µ(U) ; U ⊃ E , U open} . 
Already with µ it may happen that µ(U) = ∞, so we think of 

(1.13) µ∗ : P(X)→ [0,∞] 

as defined on the power set of X and taking values in the extended 
positive real numbers. 

Definition 1.6. A positive extended function, µ∗, defined on the power 
set of X is called an outer measure if µ∗(∅) = 0, µ∗(A) ≤ µ∗(B) 
whenever A ⊂ B and 

(1.14) µ∗( Aj) ≤ .j=1 ⊂ P(X)µ(Aj) ∀ {Aj}∞
j j 

Lemma 1.7. If u is a positive continuous linear functional on C0(X) 
then µ∗, defined by (1.11), (1.12) is an outer measure. 

To prove this we need to find enough continuous functions. I have 
relegated the proof of the following result to Problem 2. 

Lemma 1.8. Suppose Ui, i = 1, . . . , N is ,a finite collection of open sets 
in a locally compact metric space and K � 

�N Ui is a compact subset, i=1 

then there exist continuous functions fi ∈ C(X) with 0 ≤ fi ≤ 1, 
supp(fi) � Ui and 

(1.15) fi = 1 in a neighborhood of K . 
i 

1See [5] starting p.42 or [1] starting p.206. 
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Proof of Lemma 1.7. We have to prove (1.14). Suppose first that the � 
Ai are open, then so is A = Ai. If f ∈ C(X) and supp(f) � A theni 

supp(f) is covered by a finite union of the Ais. Applying Lemma 1.8 we 
can find fi’s, all but a finite number identically zero, so supp(fi) � Ai 
and i fi = 1 in a neighborhood of supp(f). 

Since f = i fif we conclude that 

u(f) = u(fif) = ⇒ µ∗(A) ≤ µ∗(Ai) 
i i 

since 0 ≤ fif ≤ 1 and supp(fif) � Ai. 
Thus (1.14) holds when the Ai are open. In the general case if 

Ai ⊂ Bi with the Bi open then, from the definition, 

µ∗( Ai) ≤ µ∗( Bi) ≤ µ∗(Bi) . 
i i i 

Taking the infimum over the Bi gives (1.14) in general. � 
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2. Measures and σ­algebras 

An outer measure such as µ∗ is a rather crude object since, even 
if the Ai are disjoint, there is generally strict inequality in (1.14). It 
turns out to be unreasonable to expect equality in (1.14), for disjoint 
unions, for a function defined on all subsets of X. We therefore restrict 
attention to smaller collections of subsets. 

Definition 2.1. A collection of subsets M of a set X is a σ­algebra if 

(1) φ, X ∈M 
(2) E ∈M = ⇒ EC = �
(3) {Ei}∞

X\E ∈M 
.i=1 Ei ∈Mi=1 ⊂M = ⇒ ∞

For a general outer measure µ∗ we define the notion of µ∗­measurability 
of a set. 

Definition 2.2. A set E ⊂ X is µ∗­measurable (for an outer measure 
µ∗ on X) if 

(2.1) µ∗(A) = µ∗(A ∩ E) + µ∗(A ∩ E�) ∀ A ⊂ X . 

Proposition 2.3. The collection of µ∗­measurable sets for any outer

measure is a σ­algebra.


Proof. Suppose E is µ∗­measurable, then EC is µ∗­measurable by the

symmetry	of (2.1). 

Suppose A, E and F are any three sets. Then 

A ∩ (E ∪ F ) = (A ∩ E ∩ F ) ∪ (A ∩ E ∩ FC) ∪ (A ∩ EC ∩ F ) 

A ∩ (E ∪ F )C = A ∩ EC ∩ FC . 

From the subadditivity of µ∗ 

µ∗(A ∩ (E ∪ F )) + µ∗(A ∩ (E ∪ F )C)


≤ µ∗(A ∩ E ∩ F ) + µ∗(A ∩ E ∪ FC)


+ µ∗(A ∩ EC ∩ F ) + µ∗(A ∩ EC ∩ FC). 

Now, if E and F are µ∗­measurable then applying the definition twice, 
for any A, 

µ∗(A) = µ∗(A ∩ E ∩ F ) + µ∗(A ∩ E ∩ FC) 

+ µ∗(A ∩ EC ∩ F ) + µ∗(A ∩ EC ∩ FC) 

≥ µ∗(A ∩ (E ∪ F )) + µ∗(A ∩ (E ∪ F )C) . 

The reverse inequality follows from the subadditivity of µ∗, so E ∪ F 
is also µ∗­measurable. 
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If {Ei}∞ is a sequence of disjoint µ∗­measurable sets, set Fn = � i=1 �n Ei and F = ∞ Ei. Then for any A,i=1	 i=1 

µ∗(A ∩ Fn) = µ∗(A ∩ Fn ∩ En) + µ∗(A ∩ Fn ∩ EC 
n ) 

= µ∗(A ∩ En) + µ∗(A ∩ Fn−1) . 

Iterating this shows that 
n

µ∗(A ∩ Fn) = µ∗(A ∩ Ej) . 
j=1 

From the µ∗­measurability of Fn and the subadditivity of µ∗, 

µ∗(A) = µ∗(A ∩ Fn) + µ∗(A ∩ FnC) 
n

µ∗(A ∩ Ej) + µ∗(A ∩ FC) .≥ 
j=1 

Taking the limit as n →∞ and using subadditivity, 
∞

(2.2) µ∗(A) ≥ µ∗(A ∩ Ej) + µ∗(A ∩ FC) 
j=1 

≥ µ∗(A ∩ F ) + µ∗(A ∩ FC) ≥ µ∗(A) 

proves that inequalities are equalities, so F is also µ∗­measurable. 
In general, for any countable union of µ∗­measurable sets, 

 

∞ ∞

Aj = Aj , 
j=1 j=1 � �Cj−1 j−1

 

 

Aj = Aj\ Ai = Aj ∩ Ai 
i=1 i=1 

is µ∗­measurable since the �Aj are disjoint. � 

A measure (sometimes called a positive measure) is an extended func­
tion defined on the elements of a σ­algebra M: 

µ : M→ [0, ∞] 

such that 

(2.3)	 µ(∅) = 0 and 

∞ ∞

µ Ai = µ(Ai)
(2.4)	

i=1 i=1 

if {Ai}∞i=1 ⊂M and Ai ∩ Aj = φ i = j. 



� 

 

12 RICHARD B. MELROSE 

The elements of M with measure zero, i.e., , µ(E) = 0, are E ∈ M
supposed to be ‘ignorable’. The measure µ is said to be complete if 

(2.5) E ⊂ X and ∃ F ∈M , µ(F ) = 0 , E ⊂ F .⇒ E ∈M

See Problem 4. 
The first part of the following important result due to Caratheodory 

was shown above. 

Theorem 2.4. If µ∗ is an outer measure on X then the collection of 
µ∗­measurable subsets of X is a σ­algebra and µ∗ restricted to M is a 
complete measure. 

Proof. We have already shown that the collection of µ∗­measurable 
subsets of X is a σ­algebra. To see the second part, observe that 
taking A = F in (2.2) gives 

∞

µ∗(F ) = µ∗(Ej) if F = Ej 
j j=1 

and the Ej are disjoint elements of M. This is (2.4). 
Similarly if µ∗(E) = 0 and F ⊂ E then µ∗(F ) = 0. Thus it is enough 

to show that for any subset E ⊂ X, µ∗(E) = 0 implies E ∈ M. For 
any A ⊂ X, using the fact that µ∗(A ∩ E) = 0, and the ‘increasing’ 
property of µ∗ 

Cµ∗(A) ≤ µ∗(A ∩ E) + µ∗(A ∩ E ) 
C= µ∗(A ∩ E ) ≤ µ∗(A) 

shows that these must always be equalities, so E ∈ M (i.e., is µ∗­
measurable). � 

Going back to our primary concern, recall that we constructed the 
outer measure µ∗ from 0 ≤ u ∈ (C0(X))� using (1.11) and (1.12). For 
the measure whose existence follows from Caratheodory’s theorem to 
be much use we need 

Proposition 2.5. If 0 ≤ u ∈ (C0(X))�, for X a locally compact met­
ric space, then each open subset of X is µ∗­measurable for the outer 
measure defined by (1.11) and (1.12) and µ in (1.11) is its measure. 

Proof. Let U ⊂ X be open. We only need to prove (2.1) for all A ⊂ X 
with µ∗(A) <∞. 2 

2Why? 
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Suppose first that A ⊂ X is open and µ∗(A) . Then A ∩ U is< ∞
open, so given � > 0 there exists f ∈ C(X) supp(f) � A ∩ U with 
0 ≤ f ≤ 1 and 

µ∗(A ∩ U) = µ(A ∩ U) ≤ u(f) + � . 

Now, A\ supp(f) is also open, so we can find g ∈ C(X) , 0 ≤ g ≤
1 , supp(g) � A\ supp(f) with 

µ∗(A\ supp(f)) = µ(A\ supp(f)) ≤ u(g) + � . 

Since 

A\ supp(f) ⊃ A ∩ UC , 0 ≤ f + g ≤ 1 , supp(f + g) � A , 

µ(A) ≥ u(f + g) = u(f) + u(g) 

> µ∗(A ∩ U) + µ∗(A ∩ UC)− 2� 

≥ µ∗(A)− 2� 

using subadditivity of µ∗. Letting � 0 we conclude that ↓
µ∗(A) ≤ µ∗(A ∩ U) + µ∗(A ∩ UC) ≤ µ∗(A) = µ(A) . 

This gives (2.1) when A is open. 
In general, if E ⊂ X and µ∗(E) < ∞ then given � > 0 there exists 

A ⊂ X open with µ∗(E) > µ∗(A)− �. Thus, 

µ∗(E) ≥ µ∗(A ∩ U) + µ∗(A ∩ UC)− � 
≥ µ∗(E ∩ U) + µ∗(E ∩ UC)− � 
≥ µ∗(E)− � . 

This shows that (2.1) always holds, so U is µ∗­measurable if it is open. 
We have already observed that µ(U) = µ∗(U) if U is open. � 

Thus we have shown that the σ­algebra given by Caratheodory’s 
theorem contains all open sets. You showed in Problem 3 that the 
intersection of any collection of σ­algebras on a given set is a σ­algebra. 
Since P(X) is always a σ­algebra it follows that for any collection 
E ⊂ P(X) there is always a smallest σ­algebra containing E , namely 

= {M ⊃ E ; M is a σ­algebraME ,M⊂ P(X)} . 

The elements of the smallest σ­algebra containing the open sets are 
called ‘Borel sets’. A measure defined on the σ­algebra of all Borel sets 
is called a Borel measure. This we have shown: 

Proposition 2.6. The measure defined by (1.11), (1.12) from 0 ≤ u ∈ 
0(X))� by Caratheodory’s theorem is a Borel measure. (C

Proof. This is what Proposition 2.5 says! See how easy proofs are. � 
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We can even continue in the same vein. A Borel measure is said to 
be outer regular on E ⊂ X if 

(2.6) µ(E) = inf {µ(U) ; U ⊃ E , U open} . 

Thus the measure constructed in Proposition 2.5 is outer regular on all 
Borel sets! A Borel measure is inner regular on E if 

(2.7) µ(E) = sup {µ(K) ; K ⊂ E , K compact} . 

Here we need to know that compact sets are Borel measurable. This 
is Problem 5. 

Definition 2.7. A Radon measure (on a metric space) is a Borel mea­
sure which is outer regular on all Borel sets, inner regular on open sets 
and finite on compact sets. 

Proposition 2.8.	The measure defined by (1.11), (1.12) from 0 ≤ u ∈ 
0(X))� using Caratheodory’s theorem is a Radon measure. (C

Proof. Suppose K ⊂ X is compact. Let χK be the characteristic func­
tion of K , χK = 1 on K , χK = 0 on KC . Suppose f ∈ C0(X) , supp(f) � 
X and f ≥ χK . Set 

U� = x ∈ X ; f(x) > 1 − �{ } 

where � > 0 is small. Thus U� is open, by the continuity of f and 
contains K. Moreover, we can choose g ∈ C(X) , supp(g) � U� , 0 ≤ 
g ≤ 1 with g = 1 near3 K. Thus, g ≤ (1 − �)−1f and hence 

µ∗(K) ≤ u(g) = (1 − �)−1 u(f) . 

Letting � ↓ 0, and using the measurability of K, 

µ(K) ≤ u(f) 

⇒ µ(K) = inf {u(f) ; f ∈ C(X) , supp(f) � X , f ≥ χK} . 

In particular this implies that µ(K) <∞ if K � X, but is also proves 
(2.7). � 

Let me now review a little of what we have done. We used the 
positive functional u to define an outer measure µ∗, hence a measure 
µ and then checked the properties of the latter. 

This is a pretty nice scheme; getting ahead of myself a little, let me 
suggest that we try it on something else. 

3Meaning in a neighborhood of K. 
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Let us say that Q ⊂ Rn is ‘rectangular’ if it is a product of finite 
intervals (open, closed or half­open) 

n

(2.8)	 Q = (or[ai , bi]or) ai ≤ bi 
i=1 

we all agree on its standard volume: 
n

(2.9)	 v(Q) = (bi − ai) ∈ [0,∞) . 
i=1 

Clearly if we have two such sets, Q1 ⊂ Q2, then v(Q1) ≤ v(Q2). Let 
us try to define an outer measure on subsets of Rn by 

∞ ∞

(2.10)	 v∗(A) = inf v(Qi) ; A ⊂ Qi, Qi rectangular . 
i=1 i=1 

We want to show that (2.10) does define an outer measure. This is 
pretty easy; certainly v(∅) = 0. Similarly if {Ai}∞i=1 are (disjoint) sets 
and {Qij}∞ is a covering of Ai by open rectangles then all the Qiji=1 � 
together cover A = Ai andi 

v∗(A) ≤ v(Qij) 
i j 

⇒ v∗(A) ≤ v∗(Ai) . 
i 

So we have an outer measure. We also want 

Lemma 2.9. If Q is rectangular then v∗(Q) = v(Q). 

Assuming this, the measure defined from v∗ using Caratheodory’s 
theorem is called Lebesgue measure. 

Proposition 2.10. Lebesgue measure is a Borel measure. 

To prove this we just need to show that (open) rectangular sets are 
v∗­measurable. 
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3. Measureability of functions 

Suppose that M is a σ­algebra on a set X4 and N is a σ­algebra on 
another set Y. A map f : X → Y is said to be measurable with respect 
to these given σ­algebras on X and Y if 

(3.1) f−1(E) ∈M ∀ E ∈ N . 

Notice how similar this is to one of the characterizations of continuity 
for maps between metric spaces in terms of open sets. Indeed this 
analogy yields a useful result. 

Lemma 3.1. If G ⊂ N generates N , in the sense that 

(3.2) = �;N � ⊃ G, N � a σ­algebra}N {N

then f : X −→ Y is measurable iff f−1(A) ∈M for all A ∈ G. 

Proof. The main point to note here is that f−1 as a map on power 
sets, is very well behaved for any map. That is if f : X Y then 

satisfies:f−1 : P(Y )→ P(X) 
→ 

f−1(EC) = (f−1(E))C 



 

∞ ∞

f−1 Ej = f−1(Ej) 

(3.3) j=1 j=1 

∞ ∞

f−1 Ej = f−1(Ej) 
j=1 j=1 

f−1(φ) = φ , f−1(Y ) = X . 

Putting these things together one sees that if M is any σ­algebra on 
X then 

(3.4) f∗(M) = E ⊂ Y ; f−1(E) ∈M 

is always a σ­algebra on Y. 
In particular if f−1(A) ∈ M for all A ∈ G ⊂ N then f∗(M) is a σ­

algebra containing G, hence containing N by the generating condition. 
Thus f−1(E) ∈M for all E ∈ N so f is measurable. � 

Proposition 3.2. Any continuous map f : X Y between metric→
spaces is measurable with respect to the Borel σ­algebras on X and Y. 

4Then X, or if you want to be pedantic (X, M), is often said to be a measure 
space or even a measurable space. 
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Proof. The continuity of f shows that f−1(E) ⊂ X is open if E ⊂ Y 
is open. By definition, the open sets generate the Borel σ­algebra on 
Y so the preceeding Lemma shows that f is Borel measurable i.e., 

f−1(B(Y )) ⊂ B(X). 

We are mainly interested in functions on X. If M is a σ­algebra 
on X then f : X R is measurable if it is measurable with respect →
to the Borel σ­algebra on R and M on X. More generally, for an 
extended function f : X [ ] we take as the ‘Borel’ σ­algebra → −∞,∞
in [−∞, ∞] the smallest σ­algebra containing all open subsets of R and 
all sets (a, ∞] and [−∞, b); in fact it is generated by the sets (a, ∞]. 
(See Problem 6.) 

Our main task is to define the integral of a measurable function: we 
start with simple functions. Observe that the characteristic function 
of a set 

χE =
1 x ∈ E 
0 x /∈ E 

is measurable if and only if E ∈ M. More generally a simple function, 

N

(3.5)	 f = aiχEi
, ai ∈ R 

i=1 

is measurable if the Ei are measurable. The presentation, (3.5), of a 
simple function is not unique. We can make it so, getting the minimal 
presentation, by insisting that all the ai are non­zero and 

Ei = {x ∈ E ; f(x) = ai} 

then f in (3.5) is measurable iff all the Ei are measurable. 
The Lebesgue integral is based on approximation of functions by 

simple functions, so it is important to show that this is possible. 

Proposition 3.3. For any non­negative µ­measurable extended func­
tion f : X −→ [0,∞] there is an increasing sequence fn of simple 
measurable functions such that limn→∞ fn(x) = f(x) for each x ∈ X 
and this limit is uniform on any measurable set on which f is finite. 

Proof. Folland [1] page 45 has a nice proof. For each integer n > 0 and 
0 ≤ k ≤ 22n − 1, set 

En,k = {x ∈ X; 2−nk ≤ f(x) < 2−n(k + 1)}, 
E � = {x ∈ X; f(x) ≥ 2n}.n 
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These are measurable sets. On increasing n by one, the interval in the 
definition of En,k is divided into two. It follows that the sequence of 
simple functions 

(3.6) fn = 2−nkχEk,n 
+ 2nχE�n 

k 

is increasing and has limit f and that this limit is uniform on any 
measurable set where f is finite. � 
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4. Integration 

The (µ)­integral of a non­negative simple function is by definition 

(4.1) f dµ = aiµ(Y ∩ Ei) , Y ∈M . 
Y i 

Here the convention is that if µ(Y ∩Ei) = ∞ but ai = 0 then ai µ(Y ∩·
Ei) = 0. Clearly this integral takes values in [0,∞]. More significantly, 
if c ≥ 0 is a constant and f and g are two non­negative (µ­measurable) 
simple functions then 

cfdµ = c fdµ � Y � Y � 
(4.2) (f + g)dµ = fdµ+ gdµ 

Y � Y � Y 

f dµ ≤ g dµ . 0 ≤ f ≤ g ⇒ 
Y Y 

(See [1] Proposition 2.13 on page 48.) 
To see this, observe that (4.1) holds for any presentation (3.5) of f 

with all ai ≥ 0. Indeed, by restriction to Ei and division by ai (which 
can be assumed non­zero) it is enough to consider the special case 

χE = bjχFj
. 

j 

The Fj can always be written as the union of a finite number, N �, 
of disjoint measurable sets, Fj = l∈Sj

Gl where j = 1, . . . , N and∪
Sj ⊂ {1, . . . , N � . Thus }

bjµ(Fj) = bj µ(Gl) = µ(E) 
j j l∈Sj 

since {j;l∈Sj} bj = 1 for each j. 

From this all the statements follow easily. 

Definition 4.1. For a non­negative µ­measurable extended function 
f : X −→ [0,∞] the integral (with respect to µ) over any measurable 
set E ⊂ X is 

(4.3) fdµ = sup{ hdµ; 0 ≤ h ≤ f, h simple and measurable.}
E E 

By taking suprema, 
E 
fdµ has the first and last properties in (4.2). 

It also has the middle property, but this is less obvious. To see this, we 
shall prove the basic ‘Monotone convergence theorem’ (of Lebesgue). 
Before doing so however, note what the vanishing of the integral means. 



� 

� 

� 

� � 

�	 � � 

� � � 

20	 RICHARD B. MELROSE 

Lemma 4.2. If f : X −→ [0, ∞] is measurable then 
E 
fdµ = 0 for a 

measurable set E if and only if 

(4.4) {x ∈ E; f(x) > 0} has measure zero. 

Proof. If (4.4) holds, then any positive simple function bounded above 
by f must also vanish outside a set of measure zero, so its integral must 
be zero and hence 

E 
fdµ = 0. Conversely, observe that the set in (4.4) 

can be written as 

 
En = {x ∈ E; f(x) > 1/n}. 

n 

Since these sets increase with n, if (4.4) does not hold then one of these 
must have positive measure. In that case the simple function n−1χEn 

has positive integral so	
E 
fdµ > 0. � 

Notice the fundamental difference in approach here between Rie­
mann and Lebesgue integrals. The Lebesgue integral, (4.3), uses ap­
proximation by functions constant on possibly quite nasty measurable 
sets, not just intervals as in the Riemann lower and upper integrals. 

Theorem 4.3 (Monotone Convergence). Let fn be an increasing se­
quence of non­negative measurable (extended) functions, then f(x) = 
limn→∞ fn(x) is measurable and 

(4.5)	 fdµ = lim fndµ 
E n→∞ E 

for any measurable set E ⊂ X. 

Proof. To see that f is measurable, observe that 

 
(4.6)	 f−1(a, ∞] = f−1(a, ∞].n 

n 

Since the sets (a, ∞] generate the Borel σ­algebra this shows that f is 
measurable. 

So we proceed to prove the main part of the proposition, which 
is (4.5). Rudin has quite a nice proof of this, [5] page 21. Here I 
paraphrase it. We can easily see from (4.1) that 

α = sup fndµ = lim fndµ ≤ fdµ. 
E n→∞ E E 

Given a simple measurable function g with 0 ≤ g ≤ f and 0 < c < 1 
consider the sets En = {x ∈ E; fn(x) ≥ cg(x)}. These are measurable � 
and increase with n. Moreover E = En. It follows that � n 

(4.7)	 fndµ ≥ fndµ ≥ c gdµ = aiµ(En ∩ Fi) 
E En En i 
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in terms of the natural presentation of g = aiχFi
. Now, the fact i 

that the En are measurable and increase to E shows that 

µ(En ∩ Fi) → µ(E ∩ Fi) 

as n → ∞. Thus the right side of (4.7) tends to c 
E 
gdµ � as n → ∞. 

Hence α ≥ c 
E 
gdµ for all 0 < c < 1. Taking the supremum over c and 

then over all such g shows that 

α = lim fndµ ≥ sup gdµ = fdµ. 
n→∞ E E E 

They must therefore be equal. � 

Now for instance the additivity in (4.1) for f ≥ 0 and g ≥ 0 any 
measurable functions follows from Proposition 3.3. Thus if f ≥ 0 is 
measurable and fn is an approximating sequence as in the Proposition 
then 

E 
fdµ = limn→∞ fndµ. So if f and g are two non­negative 

E 
measurable functions then fn(x) + gn(x) ↑ f + g(x) which shows not 
only that f + g is measurable by also that 

(f + g)dµ = fdµ + gdµ. 
E E E 

As with the definition of u+ long ago, this allows us to extend the 
definition of the integral to any integrable function. 

Definition 4.4. A measurable extended function f : X −→ [ ]−∞, ∞
is said to be integrable on E if its positive and negative parts both have 
finite integrals over E, and then 

fdµ = f+dµ − f−dµ. 
E E E 

Notice if f is µ­integrable then so is |f |. One of the objects we wish 
to study is the space of integrable functions. The fact that the integral 
of |f | can vanish encourages us to look at what at first seems a much 
more complicated object. Namely we consider an equivalence relation 
between integrable functions 

(4.8) f1 ≡ f2 ⇐⇒ µ({x ∈ X; f1(x) �= f2(x)}) = 0. 

That is we identify two such functions if they are equal ‘off a set of 
measure zero.’ Clearly if f1 ≡ f2 in this sense then 

f1|dµ = f2|dµ = 0, f1dµ = f2dµ.| |
X X X X 

A necessary condition for a measurable function f ≥ 0 to be inte­
grable is 

µ{x ∈ X; f(x) = 0.∞} = 
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Let E be the (necessarily measureable) set where f = ∞. Indeed, if 
this does not have measure zero, then the sequence of simple functions 
nχE ≤ f has integral tending to infinity. It follows that each equiva­
lence class under (4.8) has a representative which is an honest function, 
i.e. which is finite everywhere. Namely if f is one representative then 

f(x) x /
f �(x) = 

∈ E 

0 x ∈ E 

is also a representative. 
We shall denote by L1(X, µ) the space consisting of such equivalence 

classes of integrable functions. This is a normed linear space as I ask 
you to show in Problem 11. 

The monotone convergence theorem often occurrs in the slightly dis­
guised form of Fatou’s Lemma. 

Lemma 4.5 (Fatou). If fk is a sequence of non­negative integrable 
functions then 

lim inf fn dµ ≤ lim inf fn dµ . 
n→∞ n→∞ 

Proof. Set Fk(x) = inf n≥k fn(x). Thus Fk is an increasing sequence of 
non­negative functions with limiting function lim inf n→∞ fn and Fk(x) ≤
fn(x)∀ n ≥ k. By the monotone convergence theorem 

lim inf fn dµ = lim Fk(x) dµ ≤ lim inf fn dµ. 
n→∞ k→∞ n→∞ 

We further extend the integral to complex­valued functions, just say­
ing that 

f : X C→ 

is integrable if its real and imaginary parts are both integrable. Then, 
by definition, 

fdµ = Re fdµ + i Im fdµ 
E E E 

for any E ⊂ X measurable. It follows that if f is integrable then so is 
Furthermore f .| |

f dµ f	 dµ .≤ 
E 

| |
E 

This is obvious if 
E	f dµ = 0, and if not then 

f dµ = Re iθ R > 0 , θ ⊂ [0, 2π) . 
E 
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Then 

e−iθf dµ f dµ =

E E 

= e−iθf dµ 
E 

= Re(e−iθf) dµ 
E 

Re(e−iθf) dµ≤ 
E 

e−iθf dµ = f dµ≤ | | . 
E E 

The other important convergence result for integrals is Lebesgue’s 
Dominated convergence theorem. 

Theorem 4.6. If fn is a sequence of integrable functions, fk → f a.e.5 

and fn ≤ g for some integrable g then f is integrable and | | 

fdµ = lim fndµ . 
n→∞ 

Proof. First we can make the sequence fn(x) converge by changing all 
the fn(x)’s to zero on a set of measure zero outside which they converge. 
This does not change the conclusions. Moreover, it suffices to suppose 
that the fn are real­valued. Then consider 

hk = g − fk ≥ 0 . 

Now, lim inf k→∞ hk = g − f by the convergence of fn; in particular f 
is integrable. By monotone convergence and Fatou’s lemma 

(g − f)dµ = lim inf
hk dµ ≤ lim inf 
k→∞ 

(g − fk) dµ 

= g dµ − lim sup fk dµ . 
k→∞ 

k→∞ 

Similarly, if Hk 

(g + f)dµ = lim inf Hk dµ ≤ g dµ + lim inf fk dµ. 
k→∞ k→∞ 

It follows that 

= g + fk then 

lim sup fk dµ ≤ f dµ ≤ lim inf fk dµ. 
k→∞ k→∞ 

5Means on the complement of a set of measure zero. 
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Thus in fact � � 
fk dµ → f dµ . 

� 

Having proved Lebesgue’s theorem of dominated convergence, let 
me use it to show something important. As before, let µ be a positive 
measure on X. We have defined L1(X,µ); let me consider the more 
general space Lp(X,µ). A measurable function 

f : X C→ 

is said to be ‘Lp’, for 1 ≤ p < ∞, if f p is integrable6, i.e., 

f p dµ < ∞ .| |
X 

As before we consider equivalence classes of such functions under the 
equivalence relation 

(4.9) f ∼ g ⇔ µ {x; (f − g)(x) = 0} = 0 . 

We denote by Lp(X,µ) the space of such equivalence classes. It is a 
linear space and the function �� �1/p 

(4.10) �f�p = |f |p dµ 
X 

is a norm (we always assume 1 ≤ p < ∞, sometimes p = 1 is excluded 
but later p = ∞ is allowed). It is straightforward to check everything 
except the triangle inequality. For this we start with 

Lemma 4.7. If a ≥ 0, b ≥ 0 and 0 < γ < 1 then 

(4.11) a γb1−γ ≤ γa + (1 − γ)b 

with equality only when a = b. 

Proof. If b = 0 this is easy. So assume b > 0 and divide by b. Taking 
t = a/b we must show 

(4.12) tγ ≤ γt + 1 − γ , 0 ≤ t , 0 < γ < 1 . 

The function f(t) = tγ − γt is differentiable for t > 0 with derivative 
γtγ−1 − γ, which is positive for t < 1 and negative for t > 1. Thus 
f(t) ≤ f(1) with equality only for t = 1. Since f(1) = 1 − γ, this is 
(4.12), proving the lemma. � 

We use this to prove Hölder’s inequality 

6Check that |f |p is automatically measurable. 
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Lemma 4.8. If f and g are measurable then 

(4.13) fgdµ q≤ �f�p�g�

1for any 1 < p < ∞, with 1 + = 1. 
p q 

Proof. If �f�p = 0 or �g�q = 0 the result is trivial, as it is if either is 
infinite. Thus consider 

a =

p 

, b
=

q

f(x) g(x) 

�f� �g�p q 

1and apply (4.11) with γ = 
p 
. This gives 

f(x)g(x)| |f(x) p 
+ 
|g(x) q 

.
|
p

|
�f�p�g�q 

≤ 
p�f�p 

|
q
qq�g�

Integrating over X we find 

1 
f(x)g(x)| dµ

�f�p�g�q X 

|

1 1 
+ = 1 .≤ 

p q 

Since fg| dµ this implies (4.13). ≤ 
X 
|

� 
X 
fg dµ 

The final inequality we need is Minkowski’s inequality. 

Proposition 4.9. If 1 < p < ∞ and f, g ∈ Lp(X,µ) then 

(4.14) �f + g� p + �g�p .p ≤ �f�

Proof. The case p = 1 you have already done. It is also obvious if 
f + g = 0 a.e.. If not we can write 

f + g|p ≤ (|f |+ g ) f + g p−1 | | | | |

and apply Hölder’s inequality, to the right side, expanded out, �� �1/q 

f + g p dµ ≤ (�f�p + �g�p) , |f + g q(p−1) dµ .| | |

1 = = 1/p this is just (4.14). �Since q(p− 1) p and 1 −
q 

So, now we know that Lp(X,µ) is a normed space for 1 ≤ p < ∞. In 
particular it is a metric space. One important additional property that 
a metric space may have is completeness, meaning that every Cauchy 
sequence is convergent. 
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Definition 4.10. A normed space in which the underlying metric space 
is complete is called a Banach space. 

Theorem 4.11. For any measure space (X,M, µ) the spaces Lp(X,µ), 
1 ≤ p <∞, are Banach spaces. 

Proof. We need to show that a given Cauchy sequence {fn} converges 
in Lp(X,µ). It suffices to show that it has a convergent subsequence. 
By the Cauchy property, for each k ∃ n = n(k) s.t. 

(4.15) �fn − f��p ≤ 2−k ∀ � ≥ n . 

Consider the sequence 

g1 = f1 , gk = f n(k−1) , k > 1n(k) − f .


By (4.15), �gk�p ≤ 2−k , for k > 1, so the series k �gk�p converges, 
say to B <∞. Now set 

n ∞

hn(x) = gk(x) , n ≥ 1 , h(x) = gk(x). 
� 

k=1 

| | 
k=1 

Then by the monotone convergence theorem � 
hp dµ = lim hn

p dµ ≤ Bp ,| |
X n→∞ X 

where we have also used Minkowski’s inequality. Thus h ∈ Lp(X,µ), 
so the series 

∞

f(x) = gk(x) 
k=1 

converges (absolutely) almost everywhere. Since 

n

gk 

p 

p ≤ hpf(x)
 lim| |
 = 
n→∞ 

k=1 

with hp ∈ L�(X,µ), the dominated convergence theorem applies and 
shows that f ∈ Lp(X,µ). Furthermore, 

p ≤ (2h(x))pgk(x) = fn(�)(x) and f(x)− fn(�)(x) 
k=1 

so again by the dominated convergence theorem, 

p
f(x)− fn(�)(x) 0 .→

X 

Thus the subsequence fn(�) → f in Lp(X,µ), proving its completeness. 
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Next I want to return to our starting point and discuss the Riesz 
representation theorem. There are two important results in measure 
theory that I have not covered — I will get you to do most of them 
in the problems — namely the Hahn decomposition theorem and the 
Radon­Nikodym theorem. For the moment we can do without the 
latter, but I will use the former. 

So, consider a locally compact metric space, X. By a Borel measure 
on X, or a signed Borel measure, we shall mean a function on Borel 
sets 

µ : B (X)→ R 

which is given as the difference of two finite positive Borel measures 

(4.16) µ(E) = µ1(E)− µ2(E) . 

Similarly we shall say that µ is Radon, or a signed Radon measure, if 
it can be written as such a difference, with both µ1 and µ2 finite Radon 
measures. See the problems below for a discussion of this point. 

Let Mfin(X) denote the set of finite Radon measures on X. This is 
a normed space with 

(4.17) � µ� 1 = inf (µ1(X) + µ2(X)) 

with the infimum over all Radon decompositions (4.16). Each signed 
Radon measure defines a continuous linear functional on C 0(X): 

(4.18) · dµ : C 0(X) � f �−→ 
X 

f · dµ . 

Theorem 4.12 (Riesz representation.). If X is a locally compact met­
ric space then every continuous linear functional on C 0(X) is given by 
a unique finite Radon measure on X through (4.18). 

Thus the dual space of C 0(X) is Mfin(X) – at least this is how such 
a result is usually interpreted 

(4.19) (C 0(X))� = Mfin(X), 

see the remarks following the proof. 

Proof. We have done half of this already. Let me remind you of the 
steps. 

We started with u ∈ (C 0(X))� and showed that u = u+ − u− where 
u± are positive continuous linear functionals; this is Lemma 1.5. Then 
we showed that u ≥ 0 defines a finite positive Radon measure µ. Here 
µ is defined by (1.11) on open sets and µ(E) = µ∗(E) is given by (1.12) 
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on general Borel sets. It is finite because 

(4.20) µ(X) = sup {u(f) ; 0 ≤ f ≤ 1 , supp f � X , f ∈ C(X)} 
u� .≤ �

From Proposition 2.8 we conclude that µ is a Radon measure. Since 
this argument applies to u± we get two positive finite Radon measures 
µ± and hence a signed Radon measure 

(4.21) µ = µ+ − µ− ∈Mfin(X). 

In the problems you are supposed to prove the Hahn decomposition 
theorem, in particular in Problem 14 I ask you to show that (4.21) is 
the Hahn decomposition of µ — this means that there is a Borel set 
E ⊂ X such that µ−(E) = 0 , µ+(X \ E) = 0. 

What we have defined is a linear map 

(4.22) (C0(X))� →M(X), u �−→ µ . 

We want to show that this is an isomorphism, i.e., it is 1− 1 and onto. 
We first show that it is 1 − 1. That is, suppose µ = 0. Given the 

uniqueness of the Hahn decomposition this implies that µ+ = µ− = 0. 
So we can suppose that u ≥ 0 and µ = µ+ = 0 and we have to show 
that u = 0; this is obvious since 

µ(X) = sup {u(f); supp u � X, 0 ≤ f ≤ 1 f ∈ C(X)} = 0 
(4.23) 

⇒ u(f) = 0 for all such f . 

If 0 ≤ f ∈ C(X) and supp f � X then f � = f/�f�∞ is of this type 
so u(f) = 0 for every 0 ≤ f ∈ C(X) of compact support. From 
the decomposition of continuous functions into positive and negative 
parts it follows that u(f) = 0 for every f of compact support. Now, if 

o(X), then given n ∈ N there exists K � X such that f < 1/nf ∈ C | |
on X \K. As you showed in the problems, there exists χ ∈ C(X) with 
supp(χ) � X and χ = 1 on K. Thus if fn = χf then supp(fn) � X and 

sup( f − fn < 1/n. This shows that C0(X) is the closure �f − fn� = | |
of the subspace of continuous functions of compact support so by the 
assumed continuity of u, u = 0. 

So it remains to show that every finite Radon measure on X arises 
from (4.22). We do this by starting from µ and constructing u. Again 
we use the Hahn decomposition of µ, as in (4.21)7 . Thus we assume 
µ ≥ 0 and construct u. It is obvious what we want, namely 

(4.24) u(f) = f dµ , f ∈ Cc(X) . 
X 

7Actually we can just take any decomposition (4.21) into a difference of positive 
Radon measures. 
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Here we need to recall from Proposition 3.2 that continuous functions 
on X, a locally compact metric space, are (Borel) measurable. Further­
more, we know that there is an increasing sequence of simple functions 
with limit f , so


(4.25) 
X 

f dµ
 ≤ µ(X) · �f�∞ . 

This shows that u in (4.24) is continuous and that its norm �u� ≤ 
µ(X). In fact 

(4.26) u� = µ(X) . 

Indeed, the inner regularity of µ implies that there is a compact set 
K � X with µ(K) ≥ µ(X)− 1 

n
; then there is f ∈ C


1 
c(X) with 0 ≤ f ≤ 1 

, for any n.and f = 1 on K. It follows that µ(f) ≥ µ(K) ≥ µ(X)−
This proves (4.26). 

We still have to show that if 

n 

u is defined by (4.24), with µ a finite 
positive Radon measure, then the measure µ̃ defined from u via (4.24) 
is precisely µ itself. 

This is easy provided we keep things clear. Starting from µ ≥ 0 a 
finite Radon measure, define u by (4.24) and, for U ⊂ X open 

(4.27) µ̃(U) = sup fdµ, 0 ≤ f ≤ 1, f ∈ C(X), supp(f) � U .

X 

By the properties of the integral, µ̃(U) ≤ µ(U). Conversely if K � U 
there exists an element f ∈ Cc(X), 0 ≤ f ≤ 1, f = 1 on K and 
supp(f) ⊂ U. Then we know that 

(4.28) µ̃(U) ≥ fdµ ≥ µ(K). 
X 

By the inner regularity of µ, we can choose K � U such that µ(K) ≥ 
µ(U)− �, given � > 0. Thus µ̃(U) = µ(U). 

This proves the Riesz representation theorem, modulo the decompo­
sition of the measure ­ which I will do in class if the demand is there! 
In my view this is quite enough measure theory. � 

Notice that we have in fact proved something stronger than the state­
ment of the theorem. Namely we have shown that under the correspon­
dence u ←→ µ, 

(4.29) u� = µ (X) =: �µ� . 

Thus the map is an isometry. 

1 
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5. Hilbert space 

We have shown that Lp(X,µ) is a Banach space – a complete normed 
space. I shall next discuss the class of Hilbert spaces, a special class of 
Banach spaces, of which L2(X,µ) is a standard example, in which the 
norm arises from an inner product, just as it does in Euclidean space. 

An inner product on a vector space V over C (one can do the real 
case too, not much changes) is a sesquilinear form 

V × V C→ 

written (u, v), if u, v ∈ V . The ‘sesqui­’ part is just linearity in the first 
variable 

(5.1) (a1u1 + a2u2 , v) = a1(u1, v) + a2(u2, v), 

anti­linearly in the second 

(5.2) (u, a1v1 + a2v2) = a1(u, v1) + a2(u, v2) 

and the conjugacy condition 

(5.3) (u, v) = (v, u) . 

Notice that (5.2) follows from (5.1) and (5.3). If we assume in addition 
the positivity condition8 

(5.4) (u, u) ≥ 0 , (u, u) = 0 u = 0 ,⇒ 

then 

(5.5) �u� = (u, u)1/2 

is a norm on V , as we shall see. 
Suppose that u, v ∈ V have �u� = = 1. Then (u, v) = eiθ |(u, v)�v� |

for some θ ∈ R. By choice of θ, e−iθ(u, v) = (u, v) is real, so expanding 
out using linearity for s ∈ R, 

| |

0 ≤ (e−iθ u− sv , e−iθ u− sv) 
2 2 2 = − 2sRe e−iθ(u, v) + s = 1 − 2s (u, v) + s 2 .�u� �v� | |

The minimum of this occurs when s = (u, v)| and this is negative |
unless (u, v) ≤ 1. Using linearity, and checking the trivial cases u =| |
or v = 0 shows that 

(5.6) (u, v)| ≤ �u� �v�, ∀ u, v ∈ V .|
This is called Schwarz’9 inequality. 

8Notice that (u, u) is real by (5.3).

9No ‘t’ in this Schwarz.
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Using Schwarz’ inequality 
2 2 u+ v� = u� + (u, v) + (v, u) + �v�2 

≤ (�u�+ �v�)2 

= u+ u�+ �v� ∀ u, v ∈ V⇒ � v� ≤ �
which is the triangle inequality. 

Definition 5.1. A Hilbert space is a vector space V with an inner 
product satisfying (5.1) ­ (5.4) which is complete as a normed space 
(i.e., is a Banach space). 

Thus we have already shown L2(X,µ) to be a Hilbert space for any 
positive measure µ. The inner product is 

(5.7) (f, g) = fg dµ , 
X 

since then (5.3) gives �f�2. 
Another important identity valid in any inner product spaces is the 

parallelogram law: 
2 2(5.8) u+ v�2 + �u− v� = 2�u�2 + 2�v� . 

This can be used to prove the basic ‘existence theorem’ in Hilbert space 
theory. 

Lemma 5.2. Let C ⊂ H, in a Hilbert space, be closed and convex (i.e., 
su + (1 − s)v ∈ C if u, v ∈ C and 0 < s < 1). Then C contains a 
unique element of smallest norm. 

Proof. We can certainly choose a sequence un ∈ C such that 

= inf {�v� ; v ∈ C} .�un� → δ 

By the parallelogram law, 
2 2 2 un − um� = 2�un�2 + 2�um� un + um�� − �

2≤ 2(�un�2 + �um� )− 4δ2 

where we use the fact that (un +um)/2 ∈ C so must have norm at least 
δ. Thus {un} is a Cauchy sequence, hence convergent by the assumed 
completeness of H. Thus lim un = u ∈ C (since it is assumed closed) 
and by the triangle inequality 

|�un� − �u�| ≤ �un − u� → 0 

So �u� = δ. Uniqueness of u follows again from the parallelogram law 
which shows that if �u� δ then 

2 u− u� − 4�(u+ u�)/2� ≤ 0 .� � ≤ 2δ2 
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The fundamental fact about a Hilbert space is that each element 
v ∈ H defines a continuous linear functional by 

H � u �−→ (u, v) ∈ C 

and conversely every continuous linear functional arises this way. This 
is also called the Riesz representation theorem. 

Proposition 5.3. If L : H C is a continuous linear functional on→
a Hilbert space then this is a unique element v ∈ H such that 

(5.9) Lu = (u, v) ∀ u ∈ H , 

Proof. Consider the linear space 

M = {u ∈ H ; Lu = 0} 
the null space of L, a continuous linear functional on H. By the as­
sumed continuity, M is closed. We can suppose that L is not identically 
zero (since then v = 0 in (5.9)). Thus there exists w / Consider∈ M . 

w + M = {v ∈ H ; v = w + u , u ∈ M} . 
This is a closed convex subset of H. Applying Lemma 5.2 it has a 
unique smallest element, v ∈ w + M . Since v minimizes the norm on 
w + M , 

2 2 2�v + su� = + 2 Re(su, v) + �s�2�v� �u�
is stationary at s = 0. Thus Re(u, v) = 0 ∀ u ∈ M , and the same 
argument with s replaced by is shows that (v, u) = 0 ∀ u ∈ M . 

Now v ∈ w + M , so Lv = Lw = 0. Consider the element w� = 
w/Lw ∈ H. Since Lw� = 1, for any u ∈ H 

L(u − (Lu)w�) = Lu − Lu = 0 . 

2It follows that u − (Lu)w� ∈ M so if w�� = w�/�w�

(w�, w�)
(u, w��) = ((Lu)w�, w��) = Lu = Lu . 

�w��2 

The uniqueness of v follows from the positivity of the norm. � 

Corollary 5.4. For any positive measure µ, any continuous linear 
functional 

L : L2(X, µ)→ C 

is of the form � 
Lf = fg dµ , g ∈ L2(X, µ) . 

X 
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Notice the apparent power of ‘abstract reasoning’ here! Although we 
seem to have constructed g out of nowhere, its existence follows from 
the completeness of L2(X, µ), but it is very convenient to express the 
argument abstractly for a general Hilbert space. 
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6. Test functions 

So far we have largely been dealing with integration. One thing we 
have seen is that, by considering dual spaces, we can think of functions 
as functionals. Let me briefly review this idea. 

Consider the unit ball in Rn , 

Bn 
= {x ∈ Rn ; x| | ≤ 1} . 

I take the closed unit ball because I want to deal with a compact metric 
space. We have dealt with several Banach spaces of functions on Bn , 
for example


C(Bn) = u : Bn C ; u continuous →


2L2(Bn) = u : Bn C; Borel measurable with u dx <∞ .→ | | 

Here, as always below, dx is Lebesgue measure and functions are iden­
tified if they are equal almost everywhere. 

Since Bn is compact we have a natural inclusion 
2(6.1) C(Bn) � L (Bn) .→ 

This is also a topological inclusion, i.e., is a bounded linear map, since 

(6.2) �u�L2 ≤ C�u||∞ 

where C2 is the volume of the unit ball. 
In general if we have such a set up then 

Lemma 6.1. If V �→ U is a subspace with a stronger norm, 

�ϕ�U ≤ C�ϕ�V ∀ ϕ ∈ V 

then restriction gives a continuous linear map 

(6.3) U � V �, U � � L �−→ ˜ L�V ≤ C�L�U .→ L = L|V ∈ V �, � ̃
If V is dense in U then the map (6.3) is injective. 

Proof. By definition of the dual norm 

L� ̃ L̃(v) ; �v�V ≤ 1 , v ∈ V= sup �V 

L̃(v) ; �v�U ≤ C , v ∈ V≤ sup 

≤ sup {|L(u) ; �u�U ≤ C , u ∈ U| } 
= C�L�U . 

If V ⊂ U is dense then the vanishing of L : U C on V implies its →
vanishing on U . 



� 

LECTURE NOTES FOR 18.155, FALL 2004 35 

Going back to the particular case (6.1) we do indeed get a continuous 
map between the dual spaces 

2L2(Bn) ∼ (L (Bn))� → (C(Bn))� = M(Bn) .= 

Here we use the Riesz representation theorem and duality for Hilbert 
spaces. The map use here is supposed to be linear not antilinear, i.e., 

(6.4) L2(Bn) � g �−→ ·g dx ∈ (C(Bn))� . 

So the idea is to make the space of ‘test functions’ as small as reasonably 
possible, while still retaining density in reasonable spaces. 

Recall that a function u : Rn → C is differentiable at x ∈ Rn if there 
exists a ∈ Cn such that 

(6.5) u(x)− u(x)− a · (x− x) = o( x− x ) .| | | |

The ‘little oh’ notation here means that given � > 0 there exists δ > 0 
s.t. 

x− x < δ u(x)− u(x)− a(x− x) < � x− x .| | ⇒ | | | | 
The coefficients of a = (a1, . . . , an) are the partial derivations of u at 
x, 

∂u 
ai = (x)

∂xj 

since 

(6.6) ai = lim 
u(x+ tei)− u(x) 

, 
t 0 t→

ei = (0, . . . , 1, 0, . . . , 0) being the ith basis vector. The function u is 
said to be continuously differentiable on Rn if it is differentiable at each 
point x ∈ Rn and each of the n partial derivatives are continuous, 

∂u 
(6.7) : Rn C . 

∂xj 
→ 

1 0Definition 6.2. Let C0(Rn) be the subspace of C0(Rn) = C0(Rn) such 
1 ∂u that each element u ∈ C0(Rn) is continuously differentiable and 

∂xj 
∈ 

C0(Rn), j = 1, . . . , n. 

Proposition 6.3. The function 

n� ∂u 
=�u�C1 �u�∞ + � 

∂x1 

�∞ 

i=1 

1is a norm on C0(Rn) with respect to which it is a Banach space. 
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Proof. That � �C1 is a norm follows from the properties of � �∞. Namely 
= 0 certainly implies u = 0, �au�C1 = a u�C1 and the triangle u�C1 

inequality follows from the same inequality for � �∞. 
Similarly, the main part of the completeness of C1

0
0
0

(Rn) follows from

1
0(Rn). If {

are Cauchy in C
(Rn)the completeness of C

then ∂un 

un} is a Cauchy sequence in C
). It follows that there are 0

0(Rnun and the 
∂xj 

limits of these sequences, 

∂un 0
0(Rn) .vj ∈ Cun → v , 

∂xj 
→

However we do have to check that v is continuously differentiable and 
that ∂v = vj.∂xj 

One way to do this is to use the Fundamental Theorem of Calculus 
in each variable. Thus 

t ∂un 
un(x + tei) = (x + sei) ds + un(x) . 

∂xj0 

As n →∞ all terms converge and so, by the continuity of the integral, 
t 

u(x + tei) = vj(x + sei) ds + u(x) . 
0 

This shows that the limit in (6.6) exists, so vi(x) is the partial deriva­
tion of u with respect to xi. It remains only to show that u is indeed 
differentiable at each point and I leave this to you in Problem 17. 

So, almost by definition, we have an example of Lemma 6.1, 
1
0(Rn) �→ C0

0(Rn).C
It is in fact dense but I will not bother showing this (yet). So we know 
that 

0
0(Rn))� → (C1

0(Rn))�(C
and we expect it to be injective. Thus there are more functionals on


1
0(Rn) including things that are ‘more singular than measures’. 
An example is related to the Dirac delta 

0
0(Rn) ,δ(x)(u) = u(x) , u ∈ C

namely 

1
0

∂u 
(Rn (x) ∈ C .) � u �−→ 

∂xj
C


This is clearly a continuous linear functional which it is only just to 
denote ∂ δ(x).

∂xj 

Of course, why stop at one derivative? 
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1Definition 6.4. The space Ck 0(Rn) k ≥ 1 is defined induc­0 (Rn) ⊂ C
tively by requiring that 

∂u 

∂xj 
∈ Ck−1(Rn) , j = 1, . . . , n . 0 

kThe norm on C0 (Rn) is taken to be 
n� ∂u 

(6.8) u�Ck = u�Ck−1 + �Ck−1 .� � �
∂xjj=1 

kThese are all Banach spaces, since if {un} is Cauchy in C0 (Rn), it is 
Cauchy and hence convergent in Ck−1(Rn), as is ∂un/∂xj, j = 1, . . . , n−0 

1. Furthermore the limits of the ∂un/∂xj are the derivatives of the limits 
by Proposition 6.3. 

This gives us a sequence of spaces getting ‘smoother and smoother’ 

C00(Rn
0
1(Rn

0
k(Rn) ⊃ C ) ⊃ · · · ⊃ C ) ⊃ · · · , 

with norms getting larger and larger. The duals can also be expected 
to get larger and larger as k increases. 

As well as looking at functions getting smoother and smoother, we 
need to think about ‘infinity’, since Rn is not compact. Observe that 
an element g ∈ L1(Rn) (with respect to Lebesgue measure by default) 

0 kdefines a functional on C0(Rn) — and hence all the C0 (Rn)s. However a 
function such as the constant function 1 is not integrable on Rn . Since 
we certainly want to talk about this, and polynomials, we consider a 
second condition of smallness at infinity. Let us set 

(6.9) �x� = (1 + x 2)1/2| | 
a function which is the size of |x| for x large, but has the virtue of | |
being smooth10 

Definition 6.5. For any k, l ∈ N = � 
{1, 2, · · · } set � 

k k k x�−l 0 (Rn) = u ∈ C0 (Rn) ; u = x�−l v , v ∈ C0 (Rn) ,� C �
with norm, �u�k,l = v�Ck , v = x�lu. 

kNotice that the definition just says that u = x�−lv, with v ∈ C0 (Rn). 
k 

�
It follows immediately that �x�−l 0 (Rn) is a Banach space with this C
norm. 

Definition 6.6. Schwartz’ space11 of test functions on Rn is 

S(Rn) = u : Rn x�−l 0 (Rn) for all k and l ∈ N .→ C;u ∈ � Ck 

10See Problem 18.

11Laurent Schwartz – this one with a ‘t’.




� 

38 RICHARD B. MELROSE 

It is not immediately apparent that this space is non­empty (well 0 
is in there but...); that 

2exp(− x )| | ) ∈ S(Rn

is Problem 19. There are lots of other functions in there as we shall 
see. 

Schwartz’ idea is that the dual of S(Rn) should contain all the ‘in­
teresting’ objects, at least those of ‘polynomial growth’. The problem 
is that we do not have a good norm on S(Rn). Rather we have a lot of 
them. Observe that 

k�x�−l 0 (Rn x�−l� 0 (Rn) if l ≥ l� and k ≥ k� .C ) ⊂ � Ck� 

Thus we see that as a linear space 

k(6.10) S(Rn) = x�−k 0 (Rn).� C
k 

Since these spaces are getting smaller, we have a countably infinite 
number of norms. For this reason S(Rn) is called a countably normed 
space. 

Proposition 6.7. For u ∈ S(Rn), set 

k(6.11) �u�(k) = ��x� u�Ck 

and define 

(6.12) d(u, v) = 
∞� 

k=0 

2−k 
�u − v�(k) 

1 + �u − v�(k) 
, 

then d is a distance function in S(Rn) with respect to which it is a 
complete metric space. 

Proof. The series in (6.12) certainly converges, since 

�u − v�(k) ≤ 1. 
1 + �u − v�(k) 

The first two conditions on a metric are clear, 

d(u, v) = 0 ⇒ � = 0 ⇒ u = v, u − v�C0 

and symmetry is immediate. The triangle inequality is perhaps more 
mysterious! 

Certainly it is enough to show that 

(6.13) d̃(u, v) = 
�u − v� 

1 + �u − v� 
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is a metric on any normed space, since then we may sum over k. Thus 
we consider 

�u− v� 
+ 
�v − w� 

1 + �u− v� 1 + �v − w� 
�u− v�(1 + �v − w�) + �v − w�(1 + �u− v�) 

= . 
(1 + �u− v�)(1 + �v − w�) 

Comparing this to d̃(v, w) we must show that 

(1 + �u− v�)(1 + �v − w�)�u− w� 
≤ (�u− v�(1 + �v − w�) + �v − w�(1 + �u− v�))(1 + �u− w�). 

Starting from the LHS and using the triangle inequality, 

LHS ≤ �u− w� + (�u− v� + �v − w� + �u− v��v − w�)�u− w�

≤ (�u− v� + �v − w� + �u− v��v − w�)(1 + �u− w�)


≤ RHS.


Thus, d is a metric. 
Suppose un is a Cauchy sequence. Thus, d(un, um) → 0 as n,m → 

∞. In particular, given 

� > 0 ∃ N s.t. n,m > N implies 

d(un, um) < �2−k ∀ n,m > N. 

The terms in (6.12) are all positive, so this implies 

�un − um�(k) 
< � ∀ n,m > N. 

1 + �un − um�(k) 

If � < 1/2 this in turn implies that 

m�(k) < 2�,�un − u

kso the sequence is Cauchy in �x�−k 0 (Rn) for each k. From the com­
pleteness of these spaces it follows 

C
that un → u in �x�−k 0

k(Rn)j forC
each k. Given � > 0 choose k so large that 2−k < �/2. Then ∃ N s.t. 
n > N 

n�(j) < �/2 n > N, j ≤ k. ⇒ �u− u
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Hence 

u− un�(j)
d(un, u) = 2−j 

�

j≤k 
1 + �u− un�(j) 

u− un�(j)
+ 2−j 

�
1 + �u− un�(j)

j>k 

≤ �/4 + 2−k < �. 

This un → u in S(Rn).	 � 

As well as the Schwartz space, S(Rn), of functions of rapid decrease 
with all derivatives, there is a smaller ‘standard’ space of test functions, 
namely 

(6.14) Cc∞(Rn) = ); supp(u) � Rn} ,{u ∈ S(Rn

the space of smooth functions of compact support. Again, it is not 
quite obvious that this has any non­trivial elements, but it does as 
we shall see. If we fix a compact subset of Rn and look at functions 
with support in that set, for instance the closed ball of radius R > 0, 
then we get a closed subspace of S(Rn), hence a complete metric space. 
One ‘problem’ with C∞(Rn) is that it does not have a complete metric c 

topology which restricts to this topology on the subsets. Rather we 
must use an inductive limit procedure to get a decent topology. 

Just to show that this is not really hard, I will discuss it briefly 
here, but it is not used in the sequel. In particular I will not do this 
in the lectures themselves. By definition our space C∞(Rn) (denoted c 

traditionally as D(Rn)) is a countable union of subspaces 
(6.15)	 

 

˙Cc∞(Rn) = Ċc∞(B(n)), Cc∞(B(n)) = ); u = 0 in |x| > n .{u ∈ S(Rn	 }
n∈N 

Consider 
(6.16) 

(Rn); U ∩ Ċc∞(B(n)) is open in Ċ∞(B(n)) for each n .cT = {U ⊂ C∞ }
This is a topology on C∞(Rn) – contains the empty set and the whole c 

space and is closed under finite intersections and arbitrary unions – 
simply because the same is true for the open sets in Ċ∞(B(n)) for each 
n. This is in fact the inductive limit topology. One obvious question 
is:­ what does it mean for a linear functional u : Cc∞(Rn) −→ C to be 
continuous? This just means that u−1(O) is open for each open set in C. 
Directly from the definition this in turn means that u−1(O)∩Ċ∞(B(n)) 
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should be open in Ċ∞(B(n)) for each n. This however just means that, 
restricted to each of these subspaces u is continuous. If you now go 
forwards to Lemma 7.3 you can see what this means; see Problem 74. 

Of course there is a lot more to be said about these spaces; you can 
find plenty of it in the references. 
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7. Tempered distributions 

A good first reference for distributions is [2], [4] gives a more exhaus­
tive treatment. 

The complete metric topology on S(Rn) is described above. Next I 
want to try to convice you that elements of its dual space S �(Rn), have 
enough of the properties of functions that we can work with them as 
‘generalized functions’. 

First let me develop some notation. A differentiable function ϕ : 
Rn C has partial derivatives which we have denoted ∂ϕ/∂xj : Rn →	 →
C. For reasons that will become clear later, we put a 

√
−1 into the 

definition	and write 

1 ∂ϕ 
(7.1)	 Djϕ = . 

i ∂xj 

We say ϕ is once continuously differentiable if each of these Djϕ is 
continuous. Then we defined k times continuous differentiability in­
ductively by saying that ϕ and the Djϕ are (k− 1)­times continuously 
differentiable. For k = 2 this means that 

DjDkϕ are continuous for j, k = 1, · · · , n . 

Now, recall that, if continuous, these second derivatives are symmetric: 

(7.2)	 DjDkϕ = DkDjϕ . 

This means we can use a compact notation for higher derivatives. Put 
N0 = {0, 1, . . .}; we call an element α ∈ Nn a ‘multi­index’ and if ϕ is0 

at least k times continuously differentiable, we set12 

∂α1 ∂αn1 
(7.3) Dαϕ = 

i|α| ∂x1 

· · · 
∂xn 

ϕ whenever α = +αn ≤ k. | | α1 +α2 + · · ·

Now we have defined the spaces. 

k	 0(7.4) C0 (Rn) = ϕ : Rn → C ; Dαϕ ∈ C0(Rn) ∀ α .| | ≤ k 

Notice the convention is that Dαϕ is asserted to exist if it is required 
to be continuous! Using �x� = (1 + x 2) we defined | | 

k(7.5) �x�−kC0 (Rn) = ϕ : Rn	
0
k(Rn) ,→ C ; �x�kϕ ∈ C

and then our space of test functions is 

kS(Rn) = �x�−kC0 (Rn) . 
k 

12Periodically there is the possibility of confusion between the two meanings of 
|α| but it seldom arises. 
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Thus, 

(7.6)
 Dαϕ ∈ S(Rn)⇔ (�x�kϕ) ∈ C0
0(Rn α ≤ k and all k . ) ∀ | |

Lemma 7.1. The condition ϕ ∈ S(Rn) can be written 
kDαϕ ∈ C0

0(Rn) ∀ α ≤ k , ∀ k . | |x�
Proof. We first check that


0
0(Rn 0

0(Rn) , j = 1, · · · , n ϕ ∈ C ) , Dj(�x�ϕ) ∈ C
0
0

0
0(Rn x�Djϕ ∈ C (Rn) , j = 1, · · · , n . ϕ ∈ C⇔

Since 
Dj�x�ϕ = x�Djϕ+ (Dj�x�)ϕ 

x�−1 is a bounded continuous function, this is clear. 
Then consider the same thing for a larger k: 

1 
i

and Dj�x� = xj�

Dα x� 0
0(Rnpϕ ∈ C(7.7) α = p , 0 ≤ p ≤ k) ∀ | |

pDαϕ ∈ C0
0(Rn) ∀ α = p , 0 ≤ p ≤ k . |x�⇔ � |

I leave you to check this as Problem 7.1. 

Corollary 7.2. For any k ∈ N the norms 

x�kϕ�Ck and x x ϕ�∞�� � αDβ 

|α|≤k, 

|β|≤k 

are equivalent. 

Proof. Any reasonable proof of (7.2) shows that the norms 

x�kϕ�Ck and x�kDβϕ�∞ 

|β|≤k 

are equivalent. Since there are positive constants such that ⎛ ⎞ ⎛ ⎞ 

kC1 
⎝1 + |x α|⎠ ≤ �x� ≤ C2 

⎝1 + x| α|⎠ 

|α|≤k |α|≤k 

the equivalent of the norms follows. 

Proposition 7.3. A linear functional u : S(Rn) → C is continuous if 
and only if there exist C, k such that 

u(ϕ)| ≤ C sup �x αDβϕ� .x|
Rn 

|α|≤k, 

|β|≤k 
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Proof. This is just the equivalence of the norms, since we showed that 
u ∈ S �(Rn) if and only if 

u(ϕ)| ≤ C��x�kϕ�Ck|
for some k. 

Lemma 7.4. A linear map 

T : S(Rn )) → S(Rn

is continuous if and only if for each k there exist C and j such that if 
α |≤ k and
 β| ≤ k| |

� 
Dβ�αDβTϕ α ∀ ϕ ∈ S(Rn(7.8) ≤ C ϕ ).sup x sup x 

Rn 
|α�|≤j, |β�|≤j 

Proof. This is Problem 7.2. � 

All this messing about with norms shows that 

xj : S(Rn ) and Dj : S(Rn ))→ S(Rn ) → S(Rn

are continuous. 
So now we have some idea of what u ∈ S �(Rn) means. Let’s notice 

that u ∈ S �(Rn) implies 

(7.9) �(Rn) ∀ j =xju ∈ S 1, · · · , n 
(7.10) Dju ∈ S �(Rn) ∀ j = 1, · · · , n 
(7.11) ϕu ∈ S �(Rn )) ∀ ϕ ∈ S(Rn

where we have to define these things in a reasonable way. Remem­
ber that u ∈ S �(Rn) is “supposed” to be like an integral against a 
“generalized function” 

(7.12) u(ψ) = u(x)ψ(x) dx ∀ ψ ∈ S(Rn). 
Rn 

Since it would be true if u were a function we define 

(7.13) xju(ψ) = u(xjψ) ∀ ψ ∈ S(Rn). 

Then we check that xju ∈ S �(Rn): 

xju(ψ) = u(xjψ)|| ||
αDβ≤ C (xjψ)sup x 

Rn 
|α|≤k, |β|≤k 

αDβψ≤ C � sup x . 
Rn 

|α|≤k+1, |β|≤k 



� � 

� � �
 � �
 � � �
 � �


�

�

45 LECTURE NOTES FOR 18.155, FALL 2004 

Similarly we can define the partial derivatives by using the standard 
integration by parts formula 

(7.14) (Dju)(x)ϕ(x) dx = u(x)(Djϕ(x)) dx 
Rn 

− 
Rn 

1if u ∈ C0(Rn). Thus if u ∈ S �(Rn) again we define 

Dju(ψ) = −u(Djψ) ∀ ψ ∈ S(Rn). 

Then it is clear that Dju ∈ S �(Rn). 
Iterating these definition we find that Dα, for any multi­index α, 

defines a linear map 

(7.15) Dα : S �(Rn) → S �(Rn) . 

In general a linear differential operator with constant coefficients is a 
sum of such “monomials”. For example Laplace’s operator is 

∂2 ∂2 ∂2 

1 + D2 
nΔ = −

∂x2 
−
∂x2 
− · · · − 

∂x2 
= D2

2 + · · ·+ D2 . 
1 2 n 

We will be interested in trying to solve differential equations such as 

Δu = f ∈ S �(Rn) . 

We can also multiply �(Rn) by ϕ ∈ S(Rn), simply defining u ∈ S

(7.16) ϕu(ψ) = u(ϕψ) ∀ ψ ∈ S(Rn). 

For this to make sense it suffices to check that 

αDβψ .
x
αDβ(ϕψ)(7.17) ≤ Csup sup x 
Rn Rn 

|α|≤k, |α|≤k, 

|β|≤k |β|≤k 

This follows easily from Leibniz’ formula. 
Now, to start thinking of u ∈ S �(Rn) as a generalized function we 

first define its support. Recall that 

(7.18) supp(ψ) = clos {x ∈ Rn;ψ(x) = 0} . 

We can write this in another ‘weak’ way which is easier to generalize. 
Namely 

(7.19) p /∈ supp(u) ⇔ ∃ϕ ∈ S(Rn) , ϕ(p) = 0 , ϕu = 0 . 

In fact this definition makes sense for any u ∈ S �(Rn). 

Lemma 7.5. The set supp(u) defined by (7.19) is a closed subset of 
Rn and reduces to (7.18) if u ∈ S(Rn). 
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Proof. The set defined by (7.19) is closed, since 

(7.20) supp(u)� = {p ∈ Rn ), ϕ(p) = 0, ϕu = 0}; ∃ ϕ ∈ S(Rn �
is clearly open — the same ϕ works for nearby points. If ψ ∈ S(Rn) 
we define uψ ∈ S �(Rn), which we will again identify with ψ, by 

(7.21) uψ(ϕ) = ϕ(x)ψ(x) dx . 

Obviously uψ = 0 = ⇒ ψ = 0, simply set ϕ = ψ in (7.21). Thus the 
map 

(7.22) S(Rn �(Rn)) � ψ �−→ uψ ∈ S
is injective. We want to show that 

(7.23) supp(uψ) = supp(ψ) 

on the left given by (7.19) and on the right by (7.18). We show first 
that 

supp(uψ) ⊂ supp(ψ). 

Thus, we need to see that p / ∈ supp(uψ). The first ∈ supp(ψ) ⇒ p /
condition is that ψ(x) = 0 in a neighbourhood, U of p, hence there 
is a C∞ function ϕ with support in U and ϕ(p) = 0. Then ϕψ ≡ 0. 
Conversely suppose p /∈ supp(uψ). Then there exists ϕ ∈ S(Rn) with 
ϕ(p) = 0 and ϕuψ = 0, i.e., ϕuψ(η) = 0 ∀ η ∈ S(Rn). By the injectivity 
of S(Rn) � �(Rn) this means ϕψ = 0, so ψ ≡ 0 in a neighborhood of → S
p and p /∈ supp(ψ). � 

Consider the simplest examples of distribution which are not func­
tions, namely those with support at a given point p. The obvious one 
is the Dirac delta ‘function’ 

(7.24) δp(ϕ) = ϕ(p) ∀ ϕ ∈ S(Rn) . 

We can make many more, because Dα is local 

(7.25) supp(Dα u) ⊂ supp(u) ∀ u ∈ S �(Rn) . 

Indeed, p /∈ supp(u) ⇒ ∃ ϕ ∈ S(Rn), ϕu ≡ 0, ϕ(p) = 0. Thus each of 
the distributions Dαδp also has support contained in {p}. In fact none 
of them vanish, and they are all linearly independent. 
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8. Convolution and density 

We have defined an inclusion map 
(8.1) 

S(Rn �(Rn), uϕ(ψ) = ϕ(x)ψ(x) dx ∀ ψ ∈ S(Rn).) � ϕ �−→ uϕ ∈ S
Rn 

This allows us to ‘think of’ S(Rn) as a subspace of S �(Rn); that is we 
habitually identify uϕ with ϕ. We can do this because we know (8.1) 
to be injective. We can extend the map (8.1) to include bigger spaces 

0 �(Rn)C0(Rn) � ϕ �−→ uϕ ∈ S
Lp(Rn) � ϕ �−→ uϕ ∈ S �(Rn) 

(8.2) M(Rn) � µ �−→� 
uµ ∈ S �(Rn) 

uµ(ψ) = ψ dµ , 
Rn 

but we need to know that these maps are injective before we can forget 
about them. 

We can see this using convolution. This is a sort of ‘product’ of 
0functions. To begin with, suppose v ∈ C0(Rn) and ψ ∈ S(Rn). We 

define a new function by ‘averaging v with respect to ψ:’ 

(8.3) v ∗ ψ(x) = v(x − y)ψ(y) dy . 
Rn 

The integral converges by dominated convergence, namely ψ(y) is in­
tegrable and v is bounded, 

|
v(x − y)ψ(y)| ≤ �v�C0
0
|
ψ(y)
 .|

We can use the same sort of estimates to show that v ∗ψ is continuous. 
Fix x ∈ Rn , 

(8.4) v ∗ ψ(x + x�)− v ∗ ψ(x) 

= (v(x + x� − y)− v(x − y))ψ(y) dy . 

To see that this is small for x� small, we split the integral into two 
pieces. Since ψ is very small near infinity, given � > 0 we can choose 
R so large that 

(8.5) ψ(y) dy ≤ �/4 .�v�∞ · | |
|y]|≥R 

The set y ≤ R is compact and if x ≤ R�, |x� ≤ 1 then x + x�| | | | | | − y| ≤
R + R� + 1. A continuous function is uniformly continuous on any 
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compact set, so we can chose δ > 0 such that 

(8.6) sup |v(x + x� − y)− v(x − y)| · 
|y|≤R 

|ψ(y)| dy < �/2 . 
<δx�||


|y|≤R


Combining (8.5) and (8.6) we conclude that v∗ψ is continuous. Finally, 
we conclude that 

0 0(8.7) v ∈ C0(Rn) ⇒ v ∗ ψ ∈ C0(Rn) . 

For this we need to show that v ∗ ψ is small at infinity, which follows 
from the fact that v is small at infinity. Namely given � > 0 there exists 
R > 0 such that v(y) ≤ � if y ≥ R. Divide the integral defining the | | | |
convolution into two 

u(y)ψ(x − y)dy + u(y)ψ(x − y) dy|v ∗ ψ(x)| ≤ 
| |

| |
y >R y<R 

≤ �/2�ψ�∞ + � sup ψ|.u�∞ 
B(x,R)

|

Since ψ ∈ S(Rn) the last constant tends to 0 as x .| | → ∞
We can do much better than this! Assuming |x� ≤ 1 we can use |

Taylor’s formula with remainder to write � n

(8.8) ψ(z + x�)− ψ(z) = 
� d

ψ(z + tx�) dt = 
� 

xj ψ̃j(z, x
�) . 

dt 
· 

0 j=1 

As Problem 23 I ask you to check carefully that 

(8.9) ψj(z;x
�) ∈ S(Rn) depends continuously on x� in |x� .| ≤ 1

Going back to (8.3))we can use the translation and reflection­invariance 
of Lebesgue measure to rewrite the integral (by changing variable) as 

(8.10) v ∗ ψ(x) = v(y)ψ(x − y) dy . 
Rn 

This reverses the role of v and ψ and shows that if both v and ψ are in 
S(Rn) then v ∗ ψ = ψ ∗ v. 

Using this formula on (8.4) we find 

(8.11) 

v ∗ ψ(x + x�)− v ∗ ψ(x) = v(y)(ψ(x + x� − y)− ψ(x − y)) dy 
n � �n

= xj v(y)ψ̃j(x − y, x�) dy = xj(v ∗ ψj(·;x�)(x) . 
Rn 

j=1 j=1 
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From (8.9) and what we have already shown, ;x�) is continuous v ∗ ψ(·
0in both variables, and is in C0(Rn) in the first. Thus 

0(8.12) 0(Rn) , ψ ∈ S(Rn) ⇒ 0(Rn) .v ∈ C v ∗ ψ ∈ C1 

In fact we also see that 

∂ ∂ψ 
(8.13) = v ∗ .v ∗ ψ 

∂xj ∂xj 

Thus v ∗ ψ inherits its regularity from ψ. 

0Proposition 8.1. If v ∈ C0(Rn) and ψ ∈ S(Rn) then 

k(8.14) v ∗ ψ ∈ C0∞(Rn) = C0 (Rn) . 
k≥0 

Proof. This follows from (8.12), (8.13) and induction. � 

Now, let us make a more special choice of ψ. We have shown the 
existence of 

(8.15) ϕ ∈ C∞(Rn) , ϕ ≥ 0 , supp(ϕ) ⊂ {|xc | ≤ 1} . 

We can also assume Rn ϕdx = 1, by multiplying by a positive constant. 
Now consider 

x 
(8.16) ϕt(x) = t−nϕ 1 ≥ t > 0 . 

t 

This has all the same properties, except that 

(8.17) supp ϕt ⊂ {|x ϕt dx = 1 .| ≤ t} , 

0Proposition 8.2. If v ∈ C0(Rn) then as t → 0, vt = v ∗ ϕt → v in 
0C0(Rn).


Proof. using (8.17) we can write the difference as


(8.18) vt(x)− v(x) = (v(x − y)− v(x))ϕt(y) dy| | | 
Rn 

| 

≤ sup v(x − y)− v(x) 0.| | →
|y|≤t 

Here we have used the fact that ϕt ≥ 0 has support in y ≤ t and has | |
integral 1. Thus vt → v uniformly on any set on which v is uniformly 
continuous, namel Rn! � 

kCorollary 8.3. C0 (Rn) is dense in C0
p(Rn) for any k ≥ p. 

kProposition 8.4. S(Rn) is dense in C0 (Rn) for any k ≥ 0. 
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0	 0Proof. Take k = 0 first. The subspace Cc (Rn) is dense in C0(Rn), by 
0cutting off outside a large ball. If v ∈ Cc (Rn) has support in {|x| ≤ R}

then 
(Rn )cv ∗ ϕt ∈ C∞ ) ⊂ S(Rn

has support in {|x ≤ R + 1}. Since v ∗ ϕt → v the result follows for |
k = 0. 

For k ≥ 1 the same argument works, since Dα(v ∗ ϕt) = (DαV ) ∗ 
ϕt. � 

Corollary 8.5. The map from finite Radon measures 

(8.19)	 Mfin(Rn) � µ �−→ uµ ∈ S �(Rn) 

is injective. 

Now, we want the same result for L2(Rn) (and maybe for Lp(Rn), 
1 ≤ p < ∞). I leave the measure­theoretic part of the argument to 
you. 

Proposition 8.6. Elements of L2(Rn) are “continuous in the mean” 
i.e., 

u(x + t)− u(x) 2(8.20)	 lim | dx = 0 . 
|t|→0 Rn 

|

This is Problem 24. 
Using this we conclude that 

(8.21)	 S(Rn) � L2(Rn) is dense →
as before. First	 observe that the space of L2 functions of compact 
support is dense in L2(Rn), since 

lim u(x)| 2	 dx = 0 ∀ u ∈ L2(Rn) . 
R→∞ |x|≥R 

|

Then look back at the discussion of v ∗ ϕ, now v is replaced by u ∈
Lc

2(Rn). The compactness of the support means that u ∈ L1(Rn) so in 

(8.22) u ∗ ϕ(x) = u(x − y)ϕ(y)dy 
Rn 

the integral is absolutely convergent. Moreover 

u ∗ ϕ(x + x�)− u ∗ ϕ(x)| | 

= u(y)(ϕ(x + x� − y)− ϕ(x − y)) dy 

u� sup ϕ(x + x� − y)− ϕ(x − y)≤ C�
|y|≤R 

|	 | → 0 



� �� �
�
 � �� �
�


�

|��� 

�� �


�


51 LECTURE NOTES FOR 18.155, FALL 2004 

when {|x ≤ R} large enough. Thus u ∗ ϕ is continuous and the same |
argument as before shows that 

) .u ∗ ϕt ∈ S(Rn

Now to see that u ∗ ϕt → u, assuming u has compact support (or not) 
we estimate the integral 

u ∗ ϕt(x)− u(x) (u(x − y)− u(x))ϕt(y) dy| =|

u(x − y)− u(x) ϕt(y) dy .≤ | |

Using the same argument twice 

2 u ∗ ϕt(x)− u(x) dx| 

ϕt(y)
� ϕt(y

�) dx dy dy�u(x − y)− u(x) u(x − y )− u(x)≤ | |
 | |

u(x − y)− u(x) 2 | ϕt(y)ϕt(y�)dx dy dy�≤ |

2 ≤ sup u(x − y)− u(x) dx . | |
|y|≤t 

Note that at the second step here I have used Schwarz’s inequality with 
the integrand written as the product 

| 1/2
(y)ϕ

1/2 · | 1/2
(y)ϕ

1/2 
u(x − y)− u(x) ϕt t (y�) u(x − y�)− u(x) ϕt (y�) .t| |

Thus we now know that 

L2(Rn �(Rn) is injective. ) �→ S

This means that all our usual spaces of functions ‘sit inside’ S �(Rn). 
Finally we can use convolution with ϕt to show the existence of 

smooth partitions of unity. If K � U ⊂ Rn is a compact set in an 
0open set then we have shown the existence of ξ ∈ Cc (Rn), with ξ = 1 

in some neighborhood of K and ξ = 1 in some neighborhood of K and 
supp(ξ) � U . 

Then consider ξ ∗ ϕt for t small. In fact 

supp(ξ ∗ ϕt) ⊂ {p ∈ Rn ; dist(p, supp ξ) ≤ 2t} 

and similarly, 0 ≤ ξ ∗ ϕt ≤ 1 and 

= 1 at p if ξ = 1 on B(p, 2t) .ξ ∗ ϕt 
Using this we get: 
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Proposition 8.7. If Ua ⊂ Rn are open for a ∈ A and K � a∈A Ua 
then there exist finitely many ϕi ∈ C∞(Rn), with 0 ≤ ϕi ≤ 1, supp(ϕi) ⊂� c 

Uai 
such that ϕi = 1 in a neighbourhood of K. 

i 

Proof. By the compactness of K we may choose a finite open subcover. 
Using Lemma 1.8 we may choose a continuous partition, φi

� , of unity 
subordinate to this cover. Using the convolution argument above we 
can replace φi

� by φi
� ∗ ϕt for t > 0. If t is sufficiently small then this is 

again a partition of unity subordinate to the cover, but now smooth. 

Next we can make a simple ‘cut off argument’ to show 

Lemma 8.8. The space C∞(Rn) of C∞ functions of compact support c 

is dense in S(Rn). 

Proof. Choose ϕ ∈ C∞(Rn) with ϕ(x) = 1 in x ≤ 1. Then given c 

ψ ∈ S(Rn) consider the sequence 
| | 

ψn(x) = ϕ(x/n)ψ(x) . 

Clearly ψn = ψ on x ≤ n, so if it converges in S(Rn) it must converge 
to ψ. Suppose m ≥

|
n
|
then by Leibniz’s formula13 

Dα 
x (ψn(x)− ψm(x)) 

x 
= 
�� 

α 
� 

Dβ 
� 
ϕ( 
x 

)− ϕ( ) Dα−βψ(x) .xβ x n m 
·

β≤α 

All derivatives of ϕ(x/n) are bounded, independent of n and ψn = ψm 
in x ≤ n so for any p| |

|Dα 0 x
x (ψn(x)− ψm(x))| ≤ 

Cα,p�x�−2p 
|
x
| ≤ n

. | | ≥ n 

Hence ψn is Cauchy in S(Rn). � 

Thus every element of S �(Rn) is determined by its restriction to 
(Rn). The support of a tempered distribution was defined above to cC∞

be 

(8.23) supp(u) = x ∈ Rn ) , ϕ(x) = 0 , ϕu = 0} � .{ ; ∃ ϕ ∈ S(Rn �
Using the preceding lemma and the construction of smooth partitions 
of unity we find 

Proposition 8.9. f �(Rn) and supp(u) = ∅ then u = 0.u ∈ S
13Problem 25. 
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Proof. From (8.23), if ψ ∈ S(Rn), supp(ψu) ⊂ supp(u). If x � supp(u) 
then, by definition, ϕu = 0 for some ϕ ∈ S(Rn) with ϕ(x) = 0. Thus 
ϕ = 0 on B(x, �) for � > 0 sufficiently small. If ψ ∈ C∞(Rn) has support c�

˜in B(x, �) then ψu = ψϕu = 0, where ψ̃ ∈ C∞(Rn):c 

ψ̃ = 
ψ/ϕ in B(x, �) 

0 elsewhere . 

Thus, given K � Rn we can find ϕj ∈ C∞(Rn), supported in such balls, � c 

so that ϕj ≡ 1 on K but ϕju = 0. For given µ ∈ C∞(Rn) apply j c 

this to supp(µ). Then 

µ = ϕjµ ⇒ u(µ) = (φju)(µ) = 0 . 
j j 

Thus u = 0 on C∞(Rn), so u = 0. �c 

The linear space of distributions of compact support will be denoted 
C−∞(Rn); it is often written E �(Rn).c 

Now let us give a characterization of the ‘delta function’ 

δ(ϕ) = ϕ(0) ∀ ϕ ∈ S(Rn) , 

or at least the one­dimensional subspace of S �(Rn) it spans. This is 
based on the simple observation that (xjϕ)(0) = 0 if ϕ ∈ S(Rn)! 

Proposition 8.10. If u ∈ S �(Rn) satisfies xju = 0, j = 1, · · · , n then 
u = cδ. 

Proof. The main work is in characterizing the null space of δ as a linear 
functional, namely in showing that 

(8.24) ); ϕ(0) = 0}H = {ϕ ∈ S(Rn

can also be written as 
n

(8.25) H = ϕ ∈ S(Rn); ϕ = xjψj , ϕj ∈ S(Rn) . 
j=1 

Clearly the right side of (8.25) is contained in the left. To see the 
converse, suppose first that 

(8.26) ϕ ∈ S(Rn) , ϕ = 0 in |x| < 1 . 

Then define 

0 x < 1 
ψ = 2 

| |
x .ϕ/ |x| | | ≥ 1
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All the derivatives of 1/ |x| 2 are bounded in x ≥ 1, so from Leibniz’s 
formula it follows that ψ ∈ S(Rn). Since 

| |

ϕ = xj(xjψ) 
j 

this shows that ϕ of the form (8.26) is in the right side of (8.25). In 
general suppose ϕ ∈ S(Rn). Then 

t d 
ϕ(x)− ϕ(0) = ϕ(tx) dt 

dt0 
(8.27) n � t� ∂ϕ 

= xj (tx) dt . 
∂xjj=1 0 

Certainly these integrals are C∞, but they may not decay rapidly at 
infinity. However, choose µ ∈ C∞(Rn) with µ = 1 in x ≤ 1. Thenc | |
(8.27) becomes, if ϕ(0) = 0, 

ϕ = µϕ + (1 − µ)ϕ 
n � t� ∂ϕ 

= xjψj + (1 − µ)ϕ , ψj = µ 
∂xj 

(tx) dt ∈ S(Rn) . 
j=1 0 

Since (1 − µ)ϕ is of the form (8.26), this proves (8.25). 
Our assumption on u is that xju = 0, thus 

u(ϕ) = 0 ∀ ϕ ∈ H 

by (8.25). Choosing µ as above, a general ϕ ∈ S(Rn) can be written 

ϕ = ϕ(0) · µ+ ϕ� , ϕ� ∈ H . 

Then 

u(ϕ) = ϕ(0)u(µ) ⇒ u = cδ , c = u(µ) . 

This result is quite powerful, as we shall soon see. The Fourier 
transform of an element ϕ ∈ S(Rn) is14 

ˆ(8.28) ϕ(ξ) = e−ix·ξϕ(x) dx , ξ ∈ Rn . 

14Normalizations vary, but it doesn’t matter much. 
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The integral certainly converges, since |ϕ| ≤ C�x�−n−1 . In fact it fol­
ϕ is continuous, since lows easily that ˆ


ix−ξ − e−x·ξ� |
)ˆ ϕ(ξϕ(ξ)− ˆ ϕ dx| | ∈ |e 

0 as ξ� ξ .→ →

In fact 

Proposition 8.11. Fourier transformation, (8.28), defines a continu­
ous linear map 

ˆ(8.29) F : S(Rn ) , Fϕ = ϕ . ) → S(Rn

Proof. Differentiating under the integral15 sign shows that 

e−ix·ξ∂ξjϕ(ξ) = −iˆ xjϕ(x) dx . 

Since the integral on the right is absolutely convergent that shows that 
(remember the i’s) 

ˆ = −�(8.30)	 Dξjϕ xjϕ , ∀ ϕ ∈ S(Rn) . 

ξ e−ix·ξSimilarly, if we multiply by ξj and observe that ξje
−ix· = i ∂ 

∂xj 

then integration by parts shows 

∂ 
(8.31)	 ξj ϕ̂ = i ( e−ix·ξ)ϕ(x) dx 

∂xj 
∂ϕ 

= −i e−ix·ξ 
∂xj 

dx 

Djϕ 

Since xjϕ, Djϕ ∈ S(Rn) 

ξj ϕ̂ , ∀ ϕ ∈ S(Rn)
= .


these results can be iterated, showing that


ξαDβ 
ξ 

β(−1)| |Dα
xx 

βϕ(8.32)
 ϕ̂ = F . 

Thus ξαDβ 
ξ ϕ̂ 

+n+1Dα 
xx

βϕ n+1+|β| , which ϕ�C|α|≤ Cαβ sup ≤ C��x� x�
shows that F is continuous as a map (8.32). 

Suppose ϕ ∈ S(Rn). Since ˆ we can consider the distribu­ϕ ∈ S(Rn) 
tion u ∈ S �(Rn) 

(8.33)	 u(ϕ) = ϕ(ξ) dξ . ˆ
Rn 

15See [5] 
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The continuity of u follows from the fact that integration is continuous 
and (8.29). Now observe that 

u(xjϕ) = xjϕ(ξ) dξ 
Rn 

ˆ= Dξjϕdξ = 0− 
Rn 

where we use (8.30). Applying Proposition 8.10 we conclude that u = 
cδ for some (universal) constant c. By definition this means 

ˆ(8.34) ϕ(ξ) dξ = cϕ(0) . 
Rn 

So what is the constant? To find it we need to work out an example. 
The simplest one is 

2ϕ = exp(− x /2) .| | 
2Lemma 8.12. The Fourier transform of the Gaussian exp(− x /2) 

is the Gaussian (2π)n/2 exp(− ξ 2 /2). 
| |

| | 

Proof. There are two obvious methods — one uses complex analysis 
(Cauchy’s theorem) the other, which I shall follow, uses the uniqueness 
of solutions to ordinary differential equations. 

2First observe that exp(− x 2 /2) = j exp(−xj/2). Thus 16| | 
n

ˆ ˆϕ(ξ) = ψ(ξj) , ψ(x) = e−x
2/2 , 

j=1 

being a function of one variable. Now ψ satisfies the differential equa­
tion 

(∂x + x)ψ = 0 , 

and is the only solution of this equation up to a constant multiple. By 
(8.30) and (8.31) its Fourier transform satisfies 

∂xψ + � ˆ = 0 .xψ = iξψ̂ + i
d
ϕ 

dξ 

/2This is the same equation, but in the ξ variable. Thus ψ̂ = ce−|ξ|
2

. 
Again we need to find the constant. However, 

ψ̂(0) = c = e−x
2/2 dx = (2π)1/2 

16Really by Fubini’s theorem, but here one can use Riemann integrals. 
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by the standard use of polar coordinates: � � � 2π 

c = e−(x2+y2)/2 dx dy = 
∞ 

e−r
2/2r dr dθ = 2π . 

Rn 0 0 

This proves the lemma. 

Thus we have shown that for any ϕ ∈ S(Rn) 

ˆ(8.35) ϕ(ξ) dξ = (2π)nϕ(0) . 
Rn 

2Since this is true for ϕ = exp(− x /2). The identity allows us to | |
invert the Fourier transform. 
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9. Fourier inversion 

It is shown above that the Fourier transform satisfies the identity 

(9.1) ϕ(0) = (2π)−n ϕ̂(ξ) dξ ∀ ϕ ∈ S(Rn) . 
Rn 

If y ∈ Rn and ϕ ∈ S(Rn) set ψ(x) = ϕ(x + y). The translation­
invariance of Lebesgue measure shows that 

e−ix·ψ̂(ξ) = ξϕ(x + y) dx 

iy·ξ ˆ= e ϕ(ξ) . 

Applied to ψ the inversion formula (9.1) becomes 

(9.2) ϕ(y) = ψ(0) = (2π)−n ψ̂(ξ) dξ 

iy·ξ ˆ= (2π)−n e ϕ(ξ) dξ . 
Rn 

Theorem 9.1. Fourier transform F : S(Rn) → S(Rn) is an isomor­
phism with inverse 

(9.3) G : S(Rn ) , Gψ(y) = (2π)−n eiy·ξψ(ξ) dξ . )→ S(Rn

Proof. The identity (9.2) shows that F is 1− 1, i.e., injective, since we 
ˆcan remove ϕ from ϕ. Moreover, 

(9.4) Gψ(y) = (2π)−nFψ(−y) 

So G is also a continuous linear map, G : S(Rn) → S(Rn). Indeed 
the argument above shows that G ◦ F = Id and the same argument, 
with some changes of sign, shows that F · G = Id. Thus F and G are 
isomorphisms. 

Lemma 9.2. For all ϕ, ψ ∈ S(Rn), Paseval’s identity holds: 

(9.5) ϕψ dx = (2π)−n ϕ ˆˆψ dξ . 
Rn Rn 



� � � � 
� � 

� 

� 

� 

� � 

� � 

| | � 

� 

59 LECTURE NOTES FOR 18.155, FALL 2004 

Proof. Using the inversion formula on ϕ, 

ix·ξ ˆϕψ dx = (2π)−n e ϕ(ξ) dξ ψ(x) dx 

e−ix·= (2π)−n ϕ(ξ) ξψ(x) dx dξ ˆ

= (2π)−n ϕ(ξ) ˆˆ ϕ(ξ) dξ . 

Here the integrals are absolutely convergent, justifying the exchange of 
orders. 

Proposition 9.3. Fourier transform extends to an isomorphism 

(9.6) F : L2(Rn)→ L2(Rn) . 

Proof. Setting ϕ = ψ in (9.5) shows that 

(9.7) �Fϕ�L2 = (2π)n/2�ϕ�L2 . 

In particular this proves, given the known density of S(Rn) in L2(Rn), 
that F is an isomorphism, with inverse G, as in (9.6). 

For any m ∈ R 

x�mL2(Rn) = �(Rn) ; �x�−m û ∈ L2(Rn)� u ∈ S

is a well­defined subspace. We define the Sobolev spaces on Rn by, for 
m ≥ 0 

(9.8) Hm(Rn) = u ∈ L2(Rn) ; û = Fu ∈ �ξ�−mL2(Rn) . 

Thus Hm(Rn) ⊂ Hm� 
(Rn) if m ≥ m� , H0(Rn) = L2(Rn) . 

Lemma 9.4. If m ∈ N is an integer, then 

(9.9) u ∈ Hm(Rn)⇔ Dα u ∈ L2(Rn) ∀ α .| | ≤ m 

Proof. By definition, u ∈ Hm(Rn) implies that �ξ�−m û ∈ L2(Rn). Since 

Dαu = ξαˆ� u this certainly implies that Dαu ∈ L2(Rn) for α ≤ m. 
Conversely if Dαu ∈ L2(Rn) for all α ≤ m then ξαû ∈ L2(R

|
n)
|
for all | |

α ≤ m and since 

�ξ�m .≤ Cm |ξα|
|α|≤m 

this in turn implies that �ξ�m û ∈ L2(Rn). 
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Now that we have considered the Fourier transform of Schwartz test 
functions we can use the usual method, of duality, to extend it to 

ˆ ˆtempered distributions. If we set η = ψ then ψ = η and ψ = Gψ̂ = Gη 
so 

ψ(x) = (2π)−n e−ix·ξψ̂(ξ) dξ 

e−ix·= (2π)−n ξη(ξ) dξ = (2π)−nη̂(x). 

Substituting in (9.5) we find that 

η dx = ϕη dξ . ϕˆ ˆ

Now, recalling how we embed S(Rn) �→ S �(Rn) we see that 

(9.10) u ˆ η) ∀ η ∈ S(Rn
ϕ(η) = uϕ(ˆ ) . 

Definition 9.5. If u ∈ S �(Rn) we define its Fourier transform by 

ˆ(9.11) u(ϕ) = u( ˆ ) .ϕ) ∀ ϕ ∈ S(Rn

u = u · F , with each term continuous, ˆAs a composite map, ˆ u is 
continuous, i.e., û ∈ S �(Rn). 

Proposition 9.6. The definition (9.7) gives an isomorphism 

ˆ�(Rn) , Fu = uF : S �(Rn) → S

satisfying the identities � xαu α(9.12) Dαu = ξα u , � = (−1)| |Dαû . 

Proof. Since û = u ◦ F and G is the 2­sided inverse of F , 

(9.13) u = û ◦ G 

gives the inverse to F : S � �(Rn), showing it to be an isomor­(Rn) → S
phism. The identities (9.12) follow from their counterparts on S(Rn): 

αDαu(ϕ) = Dα u( ˆ ϕ)� ϕ) = u((−1)| |Dα ˆ

ξαϕ) = ˆ u(ϕ) ∀ ϕ ∈ S(Rn= u(� u(ξαϕ) = ξαˆ ) . 

We can also define Sobolev spaces of negative order: 

(9.14) Hm(Rn) = u ∈ S �(Rn) ; ˆ (Rn) .u ∈ �ξ�−mL2



� 

� 

� 

� 

� 

� 

� 

61 LECTURE NOTES FOR 18.155, FALL 2004 

Proposition 9.7. If m ≤ 0 is an integer then u ∈ Hm(Rn) if and only 
if it can be written in the form 

(9.15) u = Dα vα , vα ∈ L2(Rn) . 
|α|≤−m 

Proof. If u ∈ S �(Rn) is of the form (9.15) then 

(9.16) u = ξαv̂α with ˆˆ vα ∈ L2(Rn) . 
|α|≤−m 

mThus �ξ�m û = mv̂α. Since all the factors ξα�ξ� are |α|≤−m ξ
α�ξ�

bounded, each term here is in L2(Rn), so �ξ�m û ∈ L2(Rn) which is the 
definition, u ∈ �ξ�−mL2(Rn). 

m ˆConversely, suppose u ∈ Hm(Rn), i.e., �ξ� u ∈ L2(Rn). The func­
tion ⎛ ⎞ ⎝ |ξα ⎠ ∈ L2(Rn) (m < 0)| · �ξ�m 

|α|≤−m 

is bounded below by a positive constant. Thus ⎛ ⎞−1 

ˆv = ⎝ |ξα ⎠ u ∈ L2(Rn) .|
|α|≤−m 

vα = sgn(ξα)ˆEach of the functions ˆ v ∈ L2(Rn) so the identity (9.16), 
and hence (9.15), follows with these choices. 

Proposition 9.8. Each of the Sobolev spaces Hm(Rn) is a Hilbert space 
with the norm and inner product �� �1/2 

2(9.17) u�Hm = u(ξ)| �ξ�2m dξ ,ˆ�
Rn 

|

ˆ�u, v� = u(ξ)v̂(ξ)�ξ�2m dξ . 
Rn 

The Schwartz space S(Rn) � Hm(Rn) is dense for each m and the →
pairing 

(9.18) Hm(Rn)×H−m(Rn) � (u, u�� 
) �−→ 

ˆ((u, u�)) = u�(ξ)û�(·ξ) dξ ∈ C 
Rn 

gives an identification (Hm(Rn))� = H−m(Rn). 
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Proof. The Hilbert space property follows essentially directly from the 
definition (9.14) since �ξ�−mL2(Rn) is a Hilbert space with the norm 
(9.17). Similarly the density of S in Hm(Rn) follows, since S(Rn) dense 
in L2(Rn) (Problem L11.P3) implies �ξ�−mS(Rn) = S(Rn) is dense in 
�ξ�−mL2(Rn) and so, since F is an isomorphism in S(Rn), S(Rn) is 
dense in Hm(Rn). 

Finally observe that the pairing in (9.18) makes sense, since �ξ�−m û(ξ), 
u�(ξ) ∈ L2(Rn) implies �ξ�m ˆ

û(ξ))û�(−ξ) ∈ L1(Rn) . 

Furthermore, by the self­duality of L2(Rn) each continuous linear func­
tional 

U : Hm(Rn) → C , U(u) ≤ C�u�Hm 

can be written uniquely in the form 

U(u) = ((u, u�)) for some u� ∈ H−m(Rn) . 

thenNotice that if u, u� ∈ S(Rn) � 
((u, u�)) = u(x)u�(x) dx . 

Rn 

This is always how we “pair” functions — it is the natural pairing on 
L2(Rn). Thus in (9.18) what we have shown is that this pairing on test 
function 

S(Rn ) � (u, u� → ((u, u�)) = u(x)u�(x) dx)× S(Rn ) �−
Rn 

extends by continuity to Hm(Rn)×H−m(Rn) (for each fixed m) when 
it identifies H−m(Rn) as the dual of Hm(Rn). This was our ‘picture’ 
at the beginning. 

For m > 0 the spaces Hm(Rn) represents elements of L2(Rn) that 
have “m” derivatives in L2(Rn). For m < 0 the elements are ?? of “up 
to −m” derivatives of L2 functions. For integers this is precisely ??. 
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10. Sobolev embedding 

The properties of Sobolev spaces are briefly discussed above. If m 
is a positive integer then u ∈ Hm(Rn) ‘means’ that u has up to m 
derivatives in L2(Rn). The question naturally arises as to the sense 
in which these ‘weak’ derivatives correspond to old­fashioned ‘strong’ 
derivatives. Of course when m is not an integer it is a little harder 
to imagine what these ‘fractional derivatives’ are. However the main 
result is: 

Theorem 10.1 (Sobolev embedding). If u ∈ Hm(Rn) where m > n/2 
0then u ∈ C0(Rn), i.e., 

m(Rn(10.1)	 H ) ⊂ C00(Rn) , m > n/2 . 

Proof. By definition, u ∈ Hm(Rn) means �(Rn) and �ξ�m ˆ(ξ) ∈uv ∈ S
L2(Rn). Suppose first that u ∈ S(Rn). The Fourier inversion formula 
shows that 

(ξ) dξ
ix·ξû(2π)n u(x)|
 | = e �1/2�� �1/2 
2m 2 ξ�−2m dξ .ξ� ˆ(ξ)u dξ≤ 

Rn 

� | | · 
Rn 

Now, if m > n/2 then the second integral is finite. Since the first 
integral is the norm on Hm(Rn) we see that 

(10.2) sup u(x)| = u L∞ ≤ (2π)−n u Hm , m > n/2 . 
Rn 

| � � � �

This is all for u ∈ S(Rn), but S(Rn) � Hm(Rn) is dense. The→
estimate (10.2) shows that if uj → u in Hm(Rn), with uj ∈ S(Rn), 

0then	 � in C0(Rn). In fact u� = u in S �(Rn) since u in 

j → 0(Rn) both imply that 
u u uj →

2(Rn) and u
j → 

jϕ converges, so0in C
u u

Rn 

ujϕ→ 
Rn 

uϕ = u�ϕ ∀ ϕ ∈ S(Rn). 
Rn 

Notice here the precise meaning of u = u�, u ∈ Hm(Rn) ⊂ L2(Rn), 
0u� ∈ C0(Rn). When identifying u ∈ L2(Rn) with the corresponding 

tempered distribution, the values on any set of measure zero ‘are lost’. 
Thus as functions (10.1) means that each u ∈ Hm(Rn) has a represen­

0tative u� ∈ C0(Rn). 
We can extend this to higher derivatives by noting that 
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αProposition 10.2. If u ∈ Hm(Rn), m ∈ R, then D u ∈ Hm−|α|(Rn) 
and 

Dα m(Rn)→(10.3) : H Hm−|α|(Rn) 

is continuous. 

Proof. First it is enough to show that each Dj defines a continuous 
linear map 

(10.4) Dj : H
m(Rn) → Hm−1(Rn) ∀ j 

since then (10.3) follows by composition. 

If m ∈ R then u ∈ Hm(Rn) means ˆ 2(Rn). Since �Dju =u ∈ �ξ�−mL
ξj û, and ·

m�ξ�−m+1|ξj| �ξ�−m ≤ C ∀ m 
we conclude that Dju ∈ Hm−1(Rn) and 

u Hm .�Dju�Hm−1 ≤ Cm� �

Applying this result we see 

Corollary 10.3. If k ∈ N0 and m > n + k then
2 

m(Rn(10.5) H ) ⊂ C0 k(Rn) . 

0Proof. If α ≤ k, then Dαu ∈ H 0(Rn). Thus the ‘weak | | m−k(Rn) ⊂ C
derivatives’ Dαu are continuous. Still we have to check that this means 
that u is itself k times continuously differentiable. In fact this again 
follows from the density of S(Rn) in Hm(Rn). The continuity in (10.3) 

kimplies that if uj → u in Hm(Rn), m > n + k, then uj → u� in C0 (Rn)
2 

k(using its completeness). However u = u� as before, so u ∈ C0 (Rn). 

In particular we see that 

m(Rn(10.6) H∞(Rn) = H ) ⊂ C∞(Rn) . 
m 

These functions are not in general Schwartz test functions. 

Proposition 10.4. Schwartz space can be written in terms of weighted 
Sobolev spaces 

(10.7) S(Rn) = x�−kHk(Rn) . 
k 
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Proof. This follows directly from (10.5) since the left side is contained 
in 

k−n 

k 

Theorem 10.5 (Schwartz representation). Any tempered distribution 
can be written in the form of a finite sum 

0�−k (Rn ).) ⊂ S(RnCx


βαD 0
0(Rn).(10.8) αβ ∈ Cu = x x uαβ , u

|α|≤m 
|β|≤m 

or in the form 

β 
x (x 

α v 0
0(Rn).(10.9) u = D αβ ), vαβ ∈ C

|α|≤m

|β|≤m


Thus every tempered distribution is a finite sum of derivatives of 
continuous functions of poynomial growth. 

Proof. Essentially by definition any u ∈ S �(Rn) is continuous with re­
spect to one of the norms x kϕ�Ck . From the Sobolev embedding 
theorem we deduce that, with m > k + n/2, 

x kϕ Hm ).|u(ϕ)| ≤ C�� � � ∀ ϕ ∈ S(Rn

This is the same as 

�−k u Hm ∀ ϕ ∈ S(Rn).(ϕ) ≤ C�ϕx

�−ku ∈ H−m(Rn), i.e., from Proposition 9.8, 

Dα�−k u = 

which shows that �x


2(Rn
α ∈ L )
x uα , u . 

|α|≤m 

In fact, choose j > n/2 and consider vα ∈ Hj(Rn) defined by v̂α = 
As in the proof of Proposition 9.14 we conclude that u�ξ�−jˆα. 

β u�α,β , uα,β 
� ∈ Hj(Rn 0

0(RnD ) ⊂ C ) .uα = 
|β|≤j 

Thus,17 

k γ 0
0(Rn(10.10) u = x D )γ ∈ Cαvγ , v . 

|γ|≤M 

To get (10.9) we ‘commute’ the factor �x k to the inside; since I have 
not done such an argument carefully so far, let me do it as a lemma. 

17This is probably the most useful form of the representation theorem! 
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Lemma 10.6. For any γ ∈ Nn 
0 there are polynomials pα,γ(x) of degrees 

at most γ − α such that 

v = Dγ−α pα,γ�x�k−2|γ−α|v .�x�kDγ 

α≤γ 

Proof. In fact it is convenient to prove a more general result. Suppose 
p is a polynomial of a degree at most j then there exist polynomials of 
degrees at most j + γ − α such that 

(10.11) p�x�kDγ v = Dγ−α(pα,γ�x�k−2|γ−α|v) . 
α≤γ 

The lemma follows from this by taking p = 1. 
Furthermore, the identity (10.11) is trivial when γ = 0, and proceed­

ing by induction we can suppose it is known whenever |γ| ≤ L. Taking 
γ = L + 1, | |

Dγ = DjD
γ� |γ� = L.|

Writing the identity for γ� as 

p�x�kDγ� = Dγ�−α� (pα ,γ �x�k−2|γ�−α�|v) 
α�≤γ� 

we may differentiate with respect to xj. This gives 

p�x�kDγ = −Dj(p�x�k) Dγ� v � 
·
+2+ Dγ−α� (p� x�k−2|γ−α| v) .α�,γ� �

|α�|≤γ 

The first term on the right expands to 

1 
x�kDγ� v − kpxj�x�k−2Dγ� v) .(−(Djp) · �

i 
We may apply the inductive hypothesis to each of these terms and 
rewrite the result in the form (10.11); it is only necessary to check the 
order of the polynomials, and recall that � 2 is a polynomial of degree x�
2. � 

Applying Lemma 10.6 to (10.10) gives (10.9), once negative powers 
of �x� are absorbed into the continuous functions. Then (10.8) follows 
from (10.9) and Leibniz’s formula. � 
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11. Differential operators. 

In the last third of the course we will apply what we have learned 
about distributions, and a little more, to understand properties of dif­
ferential operators with constant coefficients. Before I start talking 
about these, I want to prove another density result. 

So far we have not defined a topology on S �(Rn) – I will leave this 
as an optional exercise.18 However we shall consider a notion of con­
vergence. Suppose uj ∈ S �(Rn) is a sequence in S �(Rn). It is said to 
converge weakly to u ∈ S �(Rn) if 

(11.1) uj(ϕ)→ ) .u(ϕ) ∀ ϕ ∈ S(Rn

There is no ‘uniformity’ assumed here, it is rather like pointwise con­
vergence (except the linearity of the functions makes it seem stronger). 

Proposition 11.1. The subspace S(Rn) ⊂ S �(Rn) is weakly dense, 
i.e., each u ∈ S �(Rn) is the weak limit of a subspace uj ∈ S(Rn). 

Proof. We can use Schwartz representation theorem to write, for some 
m depending on u, 

m u = x� Dα uα , uα ∈ L2(Rn) . 
|α|≤m 

We know that S(Rn) is dense in L2(Rn), in the sense of metric spaces 
so we can find uα,j ∈ S(Rn), uα,j → uα in L2(Rn). The density result 
then follows from the basic properties of weak convergence. � 

Proposition 11.2. If uj → u and uj
� → u� weakly in S �(Rn) then 

cuj → cu, uj +uj
� → u +u�, Dαuj → Dαu and �x�m x�mu weakly uj → �

in S �(Rn). 

Proof. This follows by writing everyting in terms of pairings, for exam­
ple if ϕ ∈ S(Rn) 

Dα uj(ϕ) = uj((−1)(α)Dαϕ) → u((−1)(α)Dαϕ) = Dα u(ϕ) . 

This weak density shows that our definition of Dj, and xj× are 
unique if we require Proposition 11.2 to hold. 

We have discussed differentiation as an operator (meaning just a 
linear map between spaces of function­like objects) 

Dj : S �(Rn �(Rn) .)→ S

18Problem 34. 
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Any polynomial on Rn 

p(ξ) = pαξ
α , pα ∈ C 

|α|≤m 

defines a differential operator19 

(11.2)	 p(D)u = pαD
α u . 

|α|≤m 

Before discussing any general theorems let me consider some exam­
ples. 

(11.3)	 On R2 , ∂ = ∂x + i∂y“d­bar operator” 
n

(11.4)	 on Rn , Δ = Dj
2“Laplacian” 

j=1 

(11.5) on R × Rn = Rn+1, Dt 
2 −Δ“Wave operator” 

(11.6) onR × Rn = Rn+1 , ∂t + Δ“Heat operator” 

(11.7) on R × Rn = , Dt + Δ“Schr¨Rn+1	 odinger operator” 

Functions, or distributions, satisfying ∂u = 0 are said to be holo­
morphic, those satisfying Δu = 0 are said to be harmonic. 

Definition 11.3. An element E ∈ S �(Rn) satisfying 

(11.8) P (D)E = δ 

is said to be a (tempered) fundamental solution of P (D). 

Theorem 11.4 (without proof). Every non­zero constant coefficient 
differential operator has a tempered fundamental solution. 

This is quite hard to prove and not as interetsing as it might seem. 
We will however give lots of examples, starting with ∂. Consider the 
function 

1 
(11.9) E(x, y) = (x+ iy)−1 , (x, y) =� 0 . 

2π

Lemma 11.5. E(x, y) is locally integrable and so defines E ∈ S �(R2) 
by 

1 
(11.10) E(ϕ) = (x+ iy)−1ϕ(x, y) dx dy , 

2π R2 

and E so defined is a tempered fundamental solution of ∂. 

19More correctly a partial differential operator with constant coefficients. 
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Proof. Since (x+iy)−1 is smooth and bounded away from the origin the 
local integrability follows from the estimate, using polar coordinates, � 2π � 1dx dy r dr dθ 
(11.11) = = 2π . 

r|(x,y)|≤1 x + iy| 0 0|
Differentiating directly in the region where it is smooth, 

∂x(x + iy)−1 = −(x + iy)−2 , ∂y(x + iy)−1 = −i(x ∈ iy)−2 

so indeed, ∂E = 0 in (x, y) =� 0.20 

The derivative is really defined by 

(11.12) (∂E)(ϕ) = E(−∂ϕ) 

1 
= lim 

� 0 
− 

2π |x|≥� ↓
|y|≥� 

(x + iy)−1 ∂ϕ dx dy . 

Here I have cut the space {|x ≤ � , y ≤ �} out of the integral and used | | |
the local integrability in taking the limit as � ↓ 0. Integrating by parts 
in x we find 

− 
|x|≥�

(x + iy)−1∂xϕdx dy = (∂x(x + iy)−1)ϕdx dy 
|x|≥� 

|y|≥� |y|≥� 

+ (x + iy)−1ϕ(x, y) dy − (x + iy)−1ϕ(x, y) dy . 
|y|≤� |y|≤� 
x=� x=−� 

There is a corrsponding formula for integration by parts in y so, 
recalling that ∂E = 0 away from (0, 0), 

(11.13) 2π∂E(ϕ) 

lim [(� + iy)−1ϕ(�, y)− (−� + iy)−1ϕ(−�, y)] dy 
� 0 

= 

↓ |y|≤� 

+ i lim [(x + i�)−1ϕ(x, �)− (x − i�)−1ϕ(x, �)] dx , 
� 0↓ |x|≤� 

assuming that both limits exist. Now, we can write 

ϕ(x, y) = ϕ(0, 0) + xψ1(x1y) + yψ2(x, y) . 

Replacing ϕ by either xψ1 or yψ2 in (11.13) both limits are zero. For 
example


(� + iy)−1�ψ1(�, y) dy 0 .≤ |ψ1| →
|y|≤� |y|≤� 

20Thus at this stage we know ∂E must be a sum of derivatives of δ. 
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Thus we get the same result in (11.13) by replacing ϕ(x, y) by ϕ(0, 0). 
Then 2π∂E(ϕ) = cϕ(0), 

dy dy 
c = lim 2� = lim < = 2π . 

� 0 � 0 |y|≤1 1 + y2 ↓↓ |y|≤� �
2 + y2 

Let me remind you that we have already discussed the convolution 
of functions 

u ∗ v(x) = u(x − y)v(y) dy = v ∗ u(x) . 

This makes sense provided u is of slow growth and s ∈ S(Rn). In fact 
we can rewrite the definition in terms of pairing 

(11.14) (u ∗ ϕ)(x) = �u, ϕ(x − ·)� 
where the · indicates the variable in the pairing. 

Theorem 11.6 (Hörmander, Theorem 4.1.1). If u ∈ S �(Rn) and ϕ ∈ 
S(Rn) then � and if supp(ϕ) � Rnu ∗ ϕ ∈ S (Rn) ∩ C∞(Rn) 

supp(u ∗ ϕ) ⊂ supp(u) + supp(ϕ) . 

For any multi­index α 

Dα(u ∗ ϕ) = Dα u ∗ ϕ = u ∗Dαϕ . 

Proof. If ϕ ∈ S(Rn) then for any fixed x ∈ Rn , 

) .ϕ(x − ·) ∈ S(Rn

Indeed the seminorm estimates required are 

sup(1 + |y| 2)k/2 Dα
yϕ(x − y) < ∞ ∀ α, k > 0 . 

y 
| |

Since Dα
yϕ(x − y) = (−1)|α|(Dαϕ)(x − y) and 

2 2 2(1 + |y| ) ≤ (1 + x − y )(1 + |x| )| | 
we conclude that 

�(1 + y 2)k/2Dα
y(x − y)�L∞ ≤ (1 + x kDα

yϕ(y)�L∞ .| | | | 2)k/2��y�
The continuity of u ∈ S �(Rn) means that for some k 

u(ϕ) ≤ C sup �(y)kDαϕ�L∞| |
|α|≤k 

so it follows that 

(11.15) |u ∗ ϕ(x)| = |�u, ϕ(x − ·)�| ≤ C(1 + x 2)k/2 .| | 
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The argument above shows that x �→ ϕ(x− ) is a continuous function ·
of x ∈ Rn with values in S(Rn), so u ∗ ϕ is continuous and satisfies 
(11.15). It is therefore an element of S �(Rn). 

Differentiability follows in the same way since for each j, with ej the 
jth unit vector 

ϕ(x+ sej − y)− ϕ(x− y)
) 

s 
∈ S(Rn

is continuous in x ∈ Rn , s ∈ R. Thus, u ∗ ϕ has continuous partial 
derivatives and 

Dju ∗ ϕ = u ∗Djϕ . 

The same argument then shows that u∗ϕ ∈ C∞(Rn). That Dj(u∗ϕ) = 
Dju ∗ ϕ follows from the definition of derivative of distributions 

Dj(u ∗ ϕ(x)) = (u ∗Djϕ)(x) 

= �u,Dxj
ϕ(x− y)� = u(y), Dyj

ϕ(x− y)�y−�
= (Dju) ∗ ϕ . 

Finally consider the support property. Here we are assuming that 
supp(ϕ) is compact; we also know that supp(u) is a closed set. We 
have to show that 

(11.16) x /∈ supp(u) + supp(ϕ) 

implies u ∗ ϕ(x�) = 0 for x� near x. Now (11.16) just means that 

(11.17) supp ϕ(x− ·) ∩ supp(u) = φ , 

Since supp ϕ(x − ·) = {y ∈ Rn;x− y ∈ supp(ϕ)}, so both statements 
mean that there is no y ∈ supp(ϕ) with x−y ∈ supp(u). This can also 
be written 

supp(ϕ) ∩ supp u(x− ·) = φ 

and as we showed when discussing supports implies 

u ∗ ϕ(x�) = u(x� − ·), ϕ� = 0 . 

From (11.17) this is an open condition on x�, so the support property 
follows. 

Now suppose ϕ, ψ ∈ S(Rn) and u ∈ S �(Rn). Then 

(11.18) (u ∗ ϕ) ∗ ψ = u ∗ (ϕ ∗ ψ) . 

This is really Hörmander’s Lemma 4.1.3 and Theorem 4.1.2; I ask you 
to prove it as Problem 35. 

We have shown that u ∗ ϕ is C∞ �(Rn) and ϕ ∈ S(Rn),if u ∈ S
i.e., the regularity of u ∗ ϕ follows from the regularity of one of the 
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factors. This makes it reasonable to expect that u ∗ v can be defined 
when �(Rn), v ∈ S �(Rn) and one of them has compact support. u ∈ S
If v ∈ Cc∞(Rn) and ϕ ∈ S(Rn) then


u ∗ v(ϕ) = u(·), v(x − ·)�ϕ(x) dx =	 u(·), v(x − ·)�v̌ϕ(−x) dx 

ˇwhere ϕ(z) = ϕ(−z). In fact using Problem 35, 

(11.19) u ∗ v(ϕ) = ((u ∗ v) ∗ ˇ	 ϕ))(0) .ϕ)(0) = (u ∗ (v ∗ ˇ

Here, v, ϕ are both smooth, but notice 

Lemma 11.7. If v ∈ S �(Rn) has compact support and ϕ ∈ S(Rn) then 
v ∗ ϕ ∈ S(Rn).


Proof. Since v ∈ S �(Rn) has compact support there exists χ ∈ C∞(Rn)
c 

such that χv = v. Then 

v ∗ ϕ(x) = (χv) ∗ ϕ(x) = �χv(y), ϕ(x − y)�y 
= u(y), χ(y)ϕ(x − y)�y . 

Thus, for some k, 

≤ C�χ(y)ϕ(x − y)�(k)|v ∗ ϕ(x)|

where � �(k) is one of our norms on S(Rn). Since χ is supported in 
some large ball, 

�χ(y)ϕ(x − y)�(k) 
≤
 sup 

|α|≤k 
�y�
kDα

y(χ(y)ϕ(x − y)) 

C sup sup |≤ 
|y|≤R |α|≤k 

(Dαϕ)(x − y)| 

≤ CN sup (1 + x − y 2)−N/2| |
|y|≤R 

CN(1 + |x| 2)−N/2 .≤ 

Thus (1 + |x| 2)N/2 is bounded for each N . The same argument |v ∗ ϕ|
applies to the derivative using Theorem	11.6, so 

) .v ∗ ϕ ∈ S(Rn

In fact we get a little more, since we see that for each k there exists 
k� and C (depending on k and v) such that 

) .v ∗ ϕ�(k) ≤ C�ϕ�(k
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This means that 
v∗ : S(Rn )) → S(Rn

is a continuous linear map. 
Now (11.19) allows us to define u∗v when u ∈ S �(Rn) and v ∈ S �(Rn) 

has compact support by 

u ∗ v(ϕ) = ϕ)(0) .u ∗ (v ∗ ˇ
Using the continuity above, I ask you to check that u ∗ v ∈ S �(Rn) in 
Problem 36. For the moment let me assume that this convolution has 
the same properties as before – I ask you to check the main parts of 
this in Problem 37. 

Recall that E ∈ S �(Rn) is a fundamental situation for P (D), a con­
stant coefficient differential operator, if P (D)E = δ. We also use a 
weaker notion. 

Definition 11.8. A parametrix for a constant coefficient differential 
operator P (D) is a distribution F ∈ S �(Rn) such that 

(11.20) P (D)F = δ + ψ , ψ ∈ C∞(Rn) . 

An operator P (D) is said to be hypoelliptic if it has a parametrix sat­
isfying 

(11.21) sing supp(F ) ⊂ {0} , 
where for any u ∈ S �(Rn) 

(11.22) (sing supp(u))� = x ∈ Rn (Rn) ,c{ ; ∃ϕ ∈ C∞

ϕ(x) = 0, ϕu ∈ C∞(Rn)} .c 

Since the same ϕ must work for nearby points in (11.22), the set 
sing supp(u) is closed. Furthermore 

(11.23) sing supp(u) ⊂ supp(u) . 

As Problem 37 I ask you to show that if K � Rn and K∩sing supp(u) = 
φ the ∃ ϕ ∈ C∞(Rn) with ϕ(x) = 1 in a neighbourhood of K such that c


(Rn). In particular
ϕu ∈ Cc∞

(11.24) sing supp(u) = φ �(Rn) ∩ C∞(Rn) .⇒ u ∈ S

Theorem 11.9. If P (D) is hypoelliptic then 

(11.25) sing supp(u) = sing supp(P (D)u) ∀ u ∈ S �(Rn) . 

Proof. One half of this is true for any differential operator: 

Lemma 11.10. If u ∈ S �(Rn) then for any polynomial 

(11.26) sing supp(P (D)u) ⊂ sing supp(u) ∀ u ∈ S �(Rn) . 
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Proof. We must show that x /	 ∈ sing supp(P (D)u).∈ sing supp(u) ⇒ x /
Now, if x /∈ sing supp(u) we can find ϕ ∈ C∞(Rn), ϕ ≡ 1 near x, such c 

that ϕu ∈ C∞(Rn). Then c 

P (D)u = P (D)(ϕu+ (1 − ϕ)u) 

= P (D)(ϕu) + P (D)((1 − ϕ)u) . 

The first term is C∞ and x / ∈ sing supp(P (D)u).∈ supp(P (D)((1−ϕ)u)), so x /

It remains to show the converse of (11.26) where P (D) is assumed to 
be hypoelliptic. Take F , a parametrix for P (D) with sing supp u ⊂ {0}
and assume, or rather arrange, that F have compact support. In fact 
if x /∈ sing supp(P (D)u) we can arrange that 

(supp(F ) + x) ∩ sing supp(P (D)u) = φ . 

Now P (D)F = δψ with ψ ∈ C∞(Rn) soc 

u = δ ∗ u = (P (D)F ) ∗ u− ψ ∗ u. 
x /Since ψ ∗ u ∈ C∞ it suffices to show that ¯ ∈ sing supp ((P (D)u) ∗ f) . 

Take ϕ ∈ C∞(Rn) with ϕf ∈ C∞, f = P (D)u butc 

(supp F + x) ∩ supp(ϕ) = 0 . 

Then f = f1 + f2, f1 = ϕf ∈ Cc∞(Rn) so 

= f1 ∗ F + f2 ∗ Ff ∗ F 
where and x /∈	 supp(f2 ∗ F ). It follows that x /f1 ∗ F ∈ C∞(Rn)	 ∈
sing supp(u).


Example 11.1. If u is holomorphic on Rn , ∂u = 0, then u ∈ C∞(Rn).


Recall from last time that a differential operator P (D) is said to be 
hypoelliptic if there exists F ∈ S �(Rn) with 

(11.27)	 P (D)F − δ ∈ C∞(Rn) and sing supp(F ) ⊂ {0} . 
The second condition here means that if ϕ ∈ C∞(Rn) and ϕ(x) = 1 in c 

x	 < � for some � > 0 then (1−ϕ)F ∈ C∞(Rn). Since P (D)((1−ϕ)F ) ∈|	 |
C∞(Rn) we conclude that 

P (D)(ϕF )− δ ∈ Cc∞(Rn) 

and we may well suppose that F , replaced now by ϕF , has compact 
support. Last time I showed that 

If P (D) is hypoelliptic and u ∈ S �(Rn) then 

sing supp(u) = sing supp(P (D)u) . 
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I will remind you of the proof later. 
First however I want to discuss the important notion of ellipticity. 

Remember that P (D) is ‘really’ just a polynomial, called the charac­
teristic polynomial � 

P (ξ) = Cαξ
α . 

|α|≤m 

It has the property 

�P (D)u(ξ) = P (ξ)ˆ �(Rn) .u(ξ) ∀ u ∈ S


This shows (if it isn’t already obvious) that we can remove P (ξ) from 
P (D) thought of as an operator on S �(Rn). 

We can think of inverting P (D) by dividing by P (ξ). This works 
well provided P (ξ) = 0, for all ξ ∈ Rn . An example of this is 

n

P (ξ) = |ξ| 2 + 1 = +1 . 
j=1 

nHowever even the Laplacian, Δ = j=1 Dj
2, does not satisfy this rather 

stringent condition. 
It is reasonable to expect the top order derivatives to be the most 

important. We therefore consider 

Pm(ξ) = Cαξ
α 

α|=m|

the leading part, or principal symbol, of P (D). 

Definition 11.11. A polynomial P (ξ), or P (D), is said to be elliptic 
of order m provided Pm(ξ) = 0 for all 0 = ξ ∈ Rn . 

So what I want to show today is 

Theorem 11.12. Every elliptic differential operator P (D) is hypoel­
liptic. 

We want to find a parametrix for P (D); we already know that we 
might as well suppose that F has compact support. Taking the Fourier 

transform of (11.27) we see that F� should satisfy 

(11.28) P (ξ)F�(ξ) = 1 + �ψ, ψ� ∈ S(Rn) . 

Here we use the fact that ψ ∈ C∞(Rn ), so ψ� ∈ S(Rn) too. c ) ⊂ S(Rn

First suppose that P (ξ) = Pm(ξ) is actually homogeneous of degree 
m. Thus 

Pm(ξ) = |ξ| m Pm(ξ�), ξ = ξ/ ξ , ξ = 0 . 
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The assumption at ellipticity means that 

(11.29) Pm(ξ�) = 0 ∀ � = {ξ ∈ Rn; ξ = 1} .� ξ ∈ Sn−1 | |
n−1 is compact and Pm is continuous Since S


(11.30)
 m(ξ�) ≥ C > 0 ∀ �ξ ∈ Sn−1P , 

for some constant C. Using homogeneity 

m(ξ�)(11.31)
 m , C > 0 ∀ ξ ∈ RnP ξ≥ C | | .


P (ξ)m

�x

Now, to get F� from (11.28) we want to divide by Pm(ξ) or multiply 
by 1/Pm(ξ). The only problem with defining 1/Pm(ξ) is at ξ = 0. We 
shall simply avoid this unfortunate point by choosing P ∈ C∞(Rn) asc 

before, with ϕ(ξ) = 1 in ξ ≤ 1.| |

Lemma 11.13. If Pm(ξ) is homogeneous of degree m and elliptic then 

(11.32) Q(ξ) =
(1 − ϕ(ξ)) ∈ S �(Rn) 

is the Fourier transform of a parametrix for Pm(D), satisfying (11.27). 

Proof. Clearly Q(ξ) is a continuous function and Q(ξ) ≤ C(1+ ξ )−m| | | | ∀ ξ ∈
Rn, so Q ∈ S �(Rn). It therefore is the Fourier transform of some 

�(Rn). Furthermore F ∈ S

P� 
m(D)F (ξ) = Pm(ξ)F� = Pm(ξ)Q(ξ) 

= 1 − ϕ(ξ) , 

Pm(D)F = δ + ψ , ψ�(ξ) = −ϕ(ξ) .⇒

Since Thus F is acϕ ∈ C∞(Rn) ⊂ S(Rn), ψ ∈ S(Rn) ⊂ C∞(Rn). 
parametrix for Pm(D). We still need to show the ‘hard part’ that 

(11.33) sing supp(F ) ⊂ {0} . 

We can show (11.33) by considering the distributions xαF . The idea 
is that for |α| large, xα vanishes rather rapidly at the origin and this 
should ‘weaken’ the singularity of F there. In fact we shall show that 

α(11.34) x αF ∈ H | |+m−n−1(Rn) , α > n+ 1 −m. | |
If you recall, these Sobolev spaces are defined in terms of the Fourier 
transform, namely we must show that 

αF ∈ �ξ�−|α|−m+n+1L2(Rn) . 
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=
Now αF�x F , so what we need to cinsider is the behaviour 

of the derivatives of F�, which is just Q(ξ) in (11.32). 

Lemma 11.14. Let P (ξ) be a polynomial of degree m satisfying 

(11.35) P (ξ)| ≥ C |ξ| m in ξ > 1/C for some C > 0 ,|	 | |

then for some constants Cα 

α|Dα|(−1) ξ 

(11.36) ξ≤ Cα | |
1 −m−|αDα | in ξ > 1/C| | . 

P (ξ) 

Proof. The estimate in (11.36) for α = 0 is just (11.35). To prove the 
higher estimates that for each α there is a polynomial of degree at most 
(m − 1) α such that | |

(11.37)	 Dα 1
= 

Lα(ξ) 
. 

(P (ξ))1+ αP (ξ) | | 

Once we know (11.37) we get (11.36) straight away since 

≤

� ξ (m−1) α| |
α1 C | | −m−|αDα | .ξ

) 
≤ Cα | |m(1+|α|P (ξ) C1+ α| | |ξ| 

We can prove (11.37) by induction, since it is certainly true for α = 0. 
Suppose it is true for |α| ≤ k. To get the same identity for each β with 
β = k+1 it is enough to differentiate one of the identities with |α| = k| |
once.	 Thus 

Dβ 1 1 DjLα(ξ) (1 + |α|)LαDjP (ξ) 
. 

P (ξ)
= DjD

α 

P (ξ)
= 
P (ξ)1+|α| − (P (ξ))2+|α| 

Since Lβ(ξ) = P (ξ)DjLα(ξ)− (1 + α )Lα(ξ)DjP (ξ) is a polynomial of | |
degree at most (m−1) α +m−1 = (m−1) β this proves the lemma. 

1−ϕGoing backwards, observe that Q(ξ) = 
Pm(ξ) 

is smooth in ξ ≤ 1/C,| |
so (11.36) implies that 

(11.38)	 DαQ(ξ) ≤ Cα(1 + ξ )−m−|α|| | | |
n�DαQ ∈ L2(Rn) if � −m − α ,⇒ �ξ� | | < −
2 

which certainly holds if � = α + m − n − 1, giving (11.34). Now, by | |
Sobolev’s embedding theorem 

x k if α > n + 1 −m + k + 
n
. αF ∈ C | |	

2 



� 

� 

78 RICHARD B. MELROSE 

In particular this means that if we choose µ ∈ C∞(Rn) with 0 /∈ supp(µ)c 
2kthen for every k, µ/ |x| is smooth and 

µF = 
µ

x 2k F ∈ C2�−2n , � > n . 
|x| 2k 

| | 

Thus µF ∈ C∞(Rn) and this is what we wanted to show, sing supp(F ) ⊂c 

.{0}
So now we have actually proved that Pm(D) is hypoelliptic if it is 

elliptic. Rather than go through the proof again to make sure, let me 
go on to the general case and in doing so review it. 

Proof. Proof of theorem. We need to show that if P (ξ) is elliptic then 
P (D) has a parametrix F as in (11.27). From the discussion above the 
ellipticity of P (ξ) implies (and is equivalent to) 

ξ m , c > 0 .|Pm(ξ)| ≥ c | | 
On the other hand 

P (ξ)− Pm(ξ) = Cαξ
α 

α <m| |

is a polynomial of degree at most m− 1, so 

P (ξ)− Pm(ξ) 2 ≤ C �(1 + ξ )m−1 .| | | |
This means that id C > 0 is large enough then in |ξ| > C, C �(1 + 

m |ξ|)m−1 < c ξ , so 
2 
| | 

P (ξ)| ≥ |Pm(ξ) P (ξ)− Pm(ξ)| | − | | 

ξ m − C �(1 + |ξ|)m−1 c
.≥ c |ξ| m ≥ 

2 
| | 

This means that P (ξ) itself satisfies the conditions of Lemma 11.14. 
Thus if ϕ ∈ C∞(Rn) is equal to 1 in a large enough ball then Q(xi) = c 

(1 − ϕ(ξ))/P (ξ) in C∞ and satisfies (11.36) which can be written 

DαQ(ξ)| ≤ Cα(1 + ξ )m−|α| .| | |

The discussion above now shows that defining F ∈ S �(Rn) by F�(ξ) = 
Q(ξ) gives a solution to (11.27). 

The last step in the proof is to show that if F ∈ S �(Rn) has compact 
support, and satisfies (11.27), then 

) , P (D)u ∈ S �(Rn )u ∈ S(Rn ) ∩ C∞(Rn

⇒ u = F ∗ (P (D)u)− ψ ∗ u ∈ C∞(Rn) . 

Let me refine this result a little bit. 
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Proposition 11.15. If f ∈ S �(Rn) and µ ∈ S �(Rn) has compact sup­
port then 

sing supp(u ∗ f) ⊂ sing supp(u) + sing supp(f). 

Proof. We need to show that p /∈ sing supp(u) ∈ sing supp(f) then 
p /∈ sing supp(u ∗ f). Once we can fix p, we might as well suppose that 
f has compact support too. Indeed, choose a large ball B(R, 0) so that 

∈ B(0, R)⇒ p /z / ∈ supp(u) + B(0, R) . 

This is possible by the assumed boundedness of supp(u). Then choose 
(Rn) with ϕ = 1 on B(0, R); it follows from Theorem L16.2, or cϕ ∈ C∞

rather its extension to distributions, that φ /∈ supp(u(1 − ϕ)f), so we 
can replace f by ϕf , noting that sing supp(ϕf) ⊂ sing supp(f). Now if 
f has compact support we can choose compact neighbourhoods K1, K2 

of sing supp(u) and sing supp(f) such that p /∈ K1 + K2. Furthermore 
we an decompose u = u1 + u2, f = f1 + f2 so that supp(u1) ⊂ K1, 
supp(f2) ⊂ K2 and u2, f2 ∈ C∞(Rn). It follows that 

= u1 ∗ f1 + u2 ∗ f2 + u1 ∗ f2 + u2 ∗ f2 .u ∗ f 

Now, p /∈ supp(u1 ∗f1), by the support property of convolution and the 
three other terms are C∞, since at least one of the factors is C∞. Thus 
p /∈ sing supp(u ∗ f).	 � 

The most important example of a differential operator which is hy­
poelliptic, but not elliptic, is the heat operator 

n

(11.39)	 ∂t + Δ = ∂t − ∂2 .xj 

j=1 

In fact the distribution 
2

1 x

(4πt)n/2 exp − |
4
|
t 

t ≥ 0 
(11.40)	 E(t, x) = 

0 t ≤ 0 

is a fundamental solution. First we need to check that E is a distri­
bution. Certainly E is C∞ in t > 0. Moreover as t 0 in x = 0 it ↓ �
vanishes with all derivatives, so it is C∞ except at t = 0, x = 0. Since 
it is clearly measurable we will check that it is locally integrable near 
the origin, i.e., 

(11.41)	 E(t, x) dx dt <∞ ,
0≤t≤1 
|x|≤1 
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since E ≥ 0. We can change variables, setting X = x/t1/2, so dx = 
tn/2 dX and the integral becomes 

1 � 
exp(−|X| 

2 

) dx dt < ∞ . 
(4π)n/2 

0 |X|≤t−1/2 4 

Since E is actually bounded near infinity, it follows that E ∈ S �Rn , 

E(ϕ) = E(t, x)ϕ(t, x) dx dt ∀ ϕ ∈ S(Rn+1) . 
t≥0 

As before we want to compute 

(11.42) (∂t + Δ)E(ϕ) = E(−∂tϕ + Δϕ) 
∞ 

= lim E(t, x)(−∂tϕ + Δϕ) dx dt . 
RnE↓0 E 

First we check that (∂t + Δ)E = 0 in t > 0, where it is a C∞ function. 
This is a straightforward computation: 

2 n x
∂tE = −

2t
E + 

| | 
E 

4t2 
2 xj

∂xj
E = −

2t
E , ∂2 E =

1 
E + 

xj 
Exj 

−
2t 4t2 

2 n x
ΔE = E + 

| | 
E .⇒

2t 4t2


Now we can integrate by parts in (11.42) to get

2/4Ee−|x|

(∂t + Δ)E(ϕ) = lim ϕ(E , x)
(4πE)n/2 

dx . 
RnE ↓0 

Making the same change of variables as before, X = x/2E1/2 , 
2 

(∂t + Δ)E(ϕ) = lim ϕ(E , E1/2X) 
e−|x|

dX . 
E ↓0 Rn πn/2 

As E ↓ 0 the integral here is bounded by the integrable function 
C exp(− X 2), for some C > 0, so by Lebesgue’s theorem of domi­| |
nated convergence, conveys to the integral of the limit. This is 

2 dx 
ϕ(0, 0) e−|x| 

πn/2 
= ϕ(0, 0) .· 

Rn 

Thus 
(∂t + Δ)E(ϕ) = ϕ(0, 0) ⇒ (∂t + Δ)E = δtδx , 

so E is indeed a fundamental solution. Since it vanishes in t < 0 it is 
canned a forward fundamrntal solution. 

Let’s see what we can use it for. 
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Proposition 11.16. If f ∈ S �Rn has compact support ∃ !u ∈ S �Rn 

with supp(m) ⊂ {t ≥ −T} for some T and 

(11.43) (∂t + Δ)u = f in Rn+1 .


Proof. Naturally we try u = . That it satisfies (11.43)follows from
E ∗f
the properties of convolution. Similarly if T is such that supp(f) ⊂ 
t ≥ T} then{

supp(u) ⊂ supp(f) + supp(E) ⊂ {t ≥ T ] . 

So we need to show uniqueness. If u1, u2 ∈ S �Rn in two solutions of 
(11.43) then their difference v = u1 − u2 satisfies the ‘homogeneous’ 
equation (∂t + Δ)v = 0. Furthermore, v = 0 in t < T � for some T �. 
Given any E ∈ R choose ϕ(t with ϕ(t) = 0 in t > t + 1, ) ∈ C∞(R) 
ϕ(t) = 1 in t < t and consider 

= ϕ(t)E = F1 + F2 ,Et 

where F1 = ψEt for some ψ ∈ C∞Rn+1), ψ = 1 near 0. Thus F1 hasc 

comapct support and in fact F2 ∈ SRn . I ask you to check this last 
statement as Problem L18.P1. 

Anyway, 

(∂t + Δ)(F1 + F2) = δ + ψ ∈ SRn , ψ = 0 t ≤ t . t 

Now, 

(∂t + Δ)(E ) = 0 = u+ ψt ∗ u . t ∗ u

Since supp(ψt) ⊂ t ≥ t ], the second tier here is supported in t ≥ t ≥
T �. Thus u = 0 in t < t+ T �, but t is arbitrary, so u = 0. � 

Notice that the assumption that u ∈ S �Rn is not redundant in the 
statement of the Proposition, if we allow “large” solutions they be­
come non­unique. Problem L18.P2 asks you to apply the fundamental 
solution to solve the initial value problem for the heat operator. 

Next we make similar use of the fundamental solution for Laplace’s 
operator. If n ≥ 3 the 

(11.44) E = Cn |x|−n+2 

is a fundamental solution. You should check that ΔEn = 0 in x = 0 
directly, I will show later that ΔEn = δ, for the appropriate choice of 
Cn, but you can do it directly, as in the case n = 3. 

Theorem 11.17. If f ∈ SRn Rn such that Δu = f.0∃ !u ∈ C∞
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Proof. Since convolution u = E ∗ f ∈ S �Rn ∩ C∞Rn is defined we 
certainly get a solution to Δu = f this way. We need to check that 

Rn . First we know that Δ is hypoelliptic so we can decompose 0u ∈ C∞

E = F1 + F2 , F1 ∈ S �Rn , supp F,� Rn 

and then F . In fact we can see from (11.44) that 2 ∈ C∞Rn 

|DαF2(x) α(1 + |x|)−n+2−|α| .| ≤ C

Now, F1 ∗ f ∈ SRn, as we showed before, and continuing the integral 
we see that 

Dα u + CN(1 + |x|)−N ∀ N| | ≤ |DαF2 ∗ f |

≤ C �


α(1 + |x|)−n+2−|α| . 

Since n > 2 it follows that 0 Rn .u ∈ C∞
So only the uniqueness remains. If there are two solutions, u1, u2 for 

a given f then v = u1 − u Rn satisfies Δv = 0. Since Rn 
02 ∈ C∞ v ∈ S �

we can take the Fourier transform and see that 

v�(χ) = 0 ⇒ supp(�v|χ| 2 ) ⊂ {0} . � 
an earlier problem was to conclude from this that �v = CαD

αδ|α|≤m 
for some constants Cα. This in turn implies that v is a polynomial. 
However the only polynomials in C0Rn are identically 0. Thus v = 00

and uniqueness follows. � 
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12. Cone support and wavefront set 

In discussing the singular support of a tempered distibution above, 
notice that 

singsupp(u) = ∅ 
only implies that u ∈ C∞(Rn), not as one might want, that u ∈ S(Rn). 
We can however ‘refine’ the concept of singular support a little to get 
this. 

Let us think of the sphere Sn−1 as the set of ‘asymptotic directions’ in 
Rn . That is, we identify a point in Sn−1 with a half­line {ax̄; a ∈ (0, ∞)}
for 0 = x̄ ∈ Rn . Since two points give the same half­line if and only if 
they are positive multiples of each other, this means we think of the 
sphere as the quotient 

(12.1) Sn−1 = (Rn \ {0})/R+ . 

Of course if we have a metric on Rn , for instance the usual Euclidean 
metric, then we can identify Sn−1 with the unit sphere. However (12.1) 
does not require a choice of metric. 

Now, suppose we consider functions on Rn\{0} which are (positively) 
x) = f(¯homogeneous of degree 0. That is f(a¯ x), for all a > 0, and 

they are just functions on Sn−1 . Smooth functions on Sn−1 correspond 
(if you like by definition) with smooth functions on Rn \ {0} which are 
homogeneous of degree 0. Let us take such a function ψ ∈ C∞(Rn \{0}), 
ψ(ax) = ψ(x) for all a > 0. Now, to make this smooth on Rn we need 
to cut it off near 0. So choose a cutoff function χ ∈ C∞(Rn), withc 

χ(x) = 1 in |x| < 1. Then 

(12.2) ψR(x) = ψ(x)(1 − χ(x/R)) ∈ C∞(Rn), 

for any R > 0. This function is supported in x ≥ R. Now, if ψ has| |
support near some point ω ∈ Sn−1 then for R large the corresponding 
function ψR will ‘localize near ω as a point at infinity of Rn .’ Rather 
than try to understand this directly, let us consider a corresponding 
analytic construction. 

First of all, a function of the form ψR is a multiplier on S(Rn). That 
is, 

(12.3) ψR· : S(Rn ).) −→ S(Rn

To see this, the main problem is to estimate the derivatives at infinity, 
since the product of smooth functions is smooth. This in turn amounts 
to estimating the deriviatives of ψ in x ≥ 1. This we can do using the | |
homogeneity. 
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Lemma 12.1. If ψ ∈ C∞(Rn \ {0}) is homogeneous of degree 0 then 

(12.4) |Dαψ α x
−|α|.| ≤ C | |

Proof. I should not have even called this a lemma. By the chain rule, 
the derivative of order α is a homogeneous function of degree −|α from 
which (12.4) follows. 

|
� 

For the smoothed versio, ψR, of ψ this gives the estimates 

(12.5) |DαψR(x) x�−|α|.| ≤ Cα�
This allows us to estimate the derivatives of the product of a Schwartz 
function and ψR : 

α(12.6) x βD (ψRf) � α α= Dα−γψRx 
βDγf = ⇒ sup x βD (ψRf) ≤ C sup �f k

γ 
| | �

γ≤α |x|≥1 

for some seminorm on S(Rn). Thus the map (12.3) is actually continu­
ous. This continuity means that ψR is a multiplier on S �(Rn), defined 
as usual by duality: 

(12.7) ψRu(f) = u(ψRf) ∀ f ∈ S(Rn). 

Definition 12.2. The cone­support and cone­singular­support of a tem­
pered distribution are the subsets Csp(u) ⊂ Rn ∪ Sn−1 and Css(u) ⊂
Rn ∪ Sn−1 defined by the conditions 
(12.8) 

Csp(u) ∩ Rn = supp(u) 

(Csp(u))� ∩ Sn−1 ={ω ∈ Sn−1; 

∃ R > 0, ψ ∈ C∞(Sn−1), ψ(ω) = 0, ψRu = 0}, 
Css(u) ∩ Rn = singsupp(u) 

(Css(u))� ∩ Sn−1 ={ω ∈ Sn−1; 

∃ R > 0, ψ ∈ C∞(Sn−1), ψ(ω) = 0, ψRu .� ∈ S(Rn)}

That is, on the Rn part these are the same sets as before but ‘at 
infinity’ they are defined by conic localization on Sn−1 . 

In considering Csp(u) and Css(u) it is convenient to combine Rn 

and Sn−1 into a compactification of Rn . To do so (topologically) let 
us identify Rn with the interior of the unit ball with respect to the 
Euclidean metric using the map 

x 
Bn(12.9) Rn � x �−→ 

�x� 
∈ {y ∈ Rn; |y| ≤ 1} = . 
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Clearly � and for 0 ≤ a < 1,x

a/(1 − a2) 

x = a

. Thus if we combine (12.9) with the identification of 

� has only the solution

2x =|

Sn
|
with the unit sphere we get an identification 

(12.10) Rn ∪ Sn−1 � Bn . 

Using this identification we can, and will, regard Csp(u) and Css(u) as 
21subsets of Bn . 

Lemma 12.3. For any u ∈ S �(Rn), Csp(u) and Css(u) are closed 
˜subsets of Bn and if ψ ∈ C∞(Sn) has supp(ψ̃) ∩ Css(u) = ∅ then for R 

˜sufficiently large ψRu ∈ S(Rn). 

Proof. Directly from the definition we know that Csp(u)∩Rn is closed, 
as is Css(u)∩Rn . Thus, in each case, we need to show that if ω ∈ Sn−1 

and ω /∈ Csp(u) then Csp(u) is disjoint from some neighbourhood of ω 
in Bn . However, by definition, 

U = x ∈ Rn;ψR(x) = � ∈ Sn−1;ψ(ω�) = 0}{ � 0} ∪ {ω �
is such a neighbourhood. Thus the fact that Csp(u) is closed follows 
directly from the definition. The argument for Css(u) is essentially the 
same. 

The second result follows by the use of a partition of unity on Sn−1 . 
Thus, for each point in supp(ψ) ⊂ Sn−1 there exists a conic localizer for 
which ψ ). By compactness we may choose a finite number of Ru ∈ S(Rn

these functions ψj such that the open sets {ψj(ω) > 0} cover supp( ψ̃). 
By assumption (ψj)Rj

for some Rj > 0. However this will u ∈ S(Rn) 
remain true if Rj is increased, so we may suppose that Rj = R is 
independent of j. Then for function 

µ = |ψj|2 ∈ C∞(Sn−1) 
j 

˜we have µRu ∈ S(Rn). Since ψ = ψ�µ for some µ ∈ C∞(Sn−1) it follows 
˜that ψR+1u ∈ S(Rn) as claimed. � 

Corollary 12.4. If u ∈ S �(Rn) then Css(u) = ∅ if and only if u ∈ 
S(Rn). 

Proof. Certainly Css(u) = ∅ if u ∈ S(Rn). If u ∈ S �(Rn) and Css(u) = 
∅ then from Lemma 12.3, ψ where ψ = 1. Thus v = Ru ∈ S(Rn) 
(1 − ψR)u ∈ Cc−∞(Rn) has singsupp(v) = ∅ so v ∈ Cc∞(Rn) and hence 
u ∈ S(Rn). 

21In fact while the topology here is correct the smooth structure on Bn is not 
the right one�– see Problem?? For our purposes here this issue is irrelevant. 
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Of course the analogous result for Csp(u), that Csp(u) = ∅ if and 
only if u = 0 follows from the fact that this is true if supp(u) = . I∅
will treat a few other properties as self­evident. For instance 
(12.11) 

Csp(φu) ⊂ Csp(u), Css(φu) ⊂ Css(u) ∀ u ∈ S �(Rn), φ ∈ S(Rn) 

and 

(12.12) Csp(c1u1 + c2u2) ⊂ Csp(u1) ∪ Csp(u2), 

Css(c1u1 + c2u2) ⊂ Css(u1) ∪ Css(u2) 

∀ u1, u2 ∈ S �(Rn), c1, c2 ∈ C. 

One useful consequence of having the cone support at our disposal 
is that we can discuss sufficient conditions to allow us to multiply dis­
tributions; we will get better conditions below using the same idea but 
applied to the wavefront set but this preliminary discussion is used 
there. In general the product of two distributions is not defined, and 
indeed not definable, as a distribution. However, we can always multi­
ply an element of S �(Rn) and an element of S(Rn). 

To try to understand multiplication look at the question of pairing 
between two distributions. 

Lemma 12.5. If Ki ⊂ Bn, i = 1, 2, are two disjoint closed (hence 
compact) subsets then we can define an unambiguous pairing 

(12.13) 
�(Rn); Css(u) ⊂ K1} × { �(Rn); Css(u) ⊂ K2} � (u1, u2){u ∈ S u ∈ S

u1(u2) ∈ C.−→

Proof. To define the pairing, choose a function ψ ∈ C∞(Sn−1) which is 
identically equal to 1 in a neighbourhood of K1∩Sn−1 and with support 
disjoint from K2 ∩ Sn−1 . Then extend it to be homogeneous, as above, 
and cut off to get ψR. If R is large enough Csp(ψR) is disjoint from K2. 
Then ψR + (1 − ψ)R = 1 + ν where ν ∈ C∞(Rn). We can find another c 

function µ ∈ C∞(Rn) such that ψ1 = ψR +µ = 1 in a neighbourhood of c 

K1 and with Csp(ψ1) disjoint from K2. Once we have this, for u1 and 
u2 as in (12.13), 

(12.14) ψ1u2 ∈ S(Rn) and (1 − ψ1)u1 ∈ S(Rn) 

since in both cases Css is empty from the definition. Thus we can define 
the desired pairing between u1 and u2 by 

(12.15) u1(u2) = u1(ψ1u2) + u2((1 − ψ1)u1). 
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Of course we should check that this definition is independent of the 
cut­off function used in it. However, if we go through the definition and 
choose a different function ψ� to start with, extend it homogeneoulsy 
and cut off (probably at a different R) and then find a correction term 
µ� then the 1­parameter linear homotopy between them 

(12.16) ψ1(t) = tψ1 + (1 − t)ψ1
� , t ∈ [0, 1] 

satisfies all the conditions required of ψ1 in formula (12.14). Thus in 
fact we get a smooth family of pairings, which we can write for the 
moment as 

(12.17) (u1, u2)t = u1(ψ1(t)u2) + u2((1 − ψ1(t))u1). 

By inspection, this is an affine­linear function of t with derivative 

(12.18) u1((ψ1 − ψ1
� )u2) + u2((ψ1 − ψ1))u1). 

Now, we just have to justify moving the smooth function in (12.18) to 
see that this gives zero. This should be possible since Csp(ψ� is1 − ψ1) 
disjoint from both K1 and K2. 

In fact, to be very careful for once, we should construct another 
function χ in the same way as we constructed ψ1 to be homogenous 
near infinity and smooth and such that Csp(χ) is also disjoint from both 
K1 and K2 but χ = 1 on Csp(ψ1 − ψ1). Then χ(ψ��

1 − ψ1) = ψ1
� − ψ1 so 

we can insert it in (12.18) and justify 

(12.19) u1((ψ1 − ψ� � �
1)u2) = u1(χ

2(ψ1 − ψ1)u2) = (χu1)((ψ1 − ψ1)χu2) 
�

1)χu1).= (χu2)(ψ1 − ψ1)χu1) = u2(ψ1 − ψ�

Here the second equality is just the identity for χ as a (multiplica­
tive) linear map on S(Rn) and hence S �(Rn) and the operation to give 
the crucial, third, equality is permissible because both elements are in 
S(Rn). � 

Once we have defined the pairing between tempered distibutions with 
disjoint conic singular supports, in the sense of (12.14), (12.15), we can 
define the product under the same conditions. Namely to define the 
product of say u1 and u2 we simply set 

(12.20) u1u2(φ) = u1(φu2) = u2(φu1) ∀ φ ∈ S(Rn), 

provided Css(u1) ∩ Css(u2) = .∅

Indeed, this would be true if one of u1 or u2 was itself in S(Rn) and 
makes sense in general. I leave it to you to check the continuity state­
ment required to prove that the product is actually a tempered disti­
bution (Problem 78). 
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One can also give a similar discussion of the convolution of two tem­
pered distributions. Once again we do not have a definition of u∗v as a 
tempered distribution for all u, v ∈ S �(Rn). We do know how to define 
the convolution if either u or v is compactly supported, or if either is 
in S(Rn). This leads directly to 

Lemma 12.6. If Css(u)∩Sn−1 = ∅ then u∗v is defined unambiguously 
by 

x 
(12.21) u ∗ v = u1 ∗ v + u , u1 = (1 − χ( ))u, u2 = u− u12 ∗ v

r 

where χ ∈ C∞(Rn) has χ(x) = 1 in x ≤ 1 and R is sufficiently large; c 

there is a similar definition if Css(v)
|
∩
|

Sn−1 = .∅

Proof. Since Css(u)∩ Sn−1 = , we know that Css(u1) = ∅ if R is large ∅
enough, so then both terms on the right in (12.21) are well­defined. To 
see that the result is independent of R just observe that the difference 
of the right­hand side for two values of R is of the form w ∗ v − w ∗ v 
with w compactly supported. � 

Now, we can go even further using a slightly more sophisticated 
decomposition based on 

Lemma 12.7. If u ∈ S �(Rn) and Css(u) ∩ Γ = ∅ where Γ ⊂ Sn−1 is a 
closed set, then u = u1 + u2 where Csp(u1)∩Γ = ∅ and u2 ∈ S(Rn); in 
fact 

(12.22) u = u� 1 + u2 where u� (Rn) and1 + u�� 1 ∈ Cc−∞

0 / 1), x ∈ Rn \ {0}, x/ x = ⇒ x / 1).∈ supp(u�� ∈ supp(u��| | ∈ Γ 

Proof. A covering argument which you should provide. � 

Let Γi ⊂ Rn, i = 1, 2, be closed cones. That is they are closed sets 
such that if x ∈ Γi and a > 0 then ax ∈ Γi. Suppose in addition that 

(12.23) Γ1 ∩ (−Γ2) = {0}. 
That is, if x ∈ Γ1 and −x ∈ Γ2 then x = 0. Then it follows that for 
some c > 0, 

(12.24) x ∈ Γ1, y ∈ Γ2 = x+ y| ≥ c(|x|+ y ).⇒ | | |
To see this consider x + y where x ∈ Γ1, y ∈ Γ2 and y x . We | | ≤ | |
can assume that x = 0, otherwise the estimate is trivially true with 
c = 1, and then Y = y/ x ∈ Γ1 and X = x/ x ∈ Γ2 have Y ≤ 1 and | | | | | |
X| = 1. However X+Y = 0, since X = 1, so by the continuity of the 
sum, |X + Y ≥ 2c > 0 for some c > 0. Thus X + Y ( X| + Y )| | | ≥ c | | |
and the result follows by scaling back. The other case, of |x| ≤ |y| 
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follows by the same argument with x and y interchanged, so (12.24) is 
a consequence of (12.23). 

Lemma 12.8. For any �(Rn) and φ ∈ S(Rn),u ∈ S
(12.25)	 Css(φ ∗ u) ⊂ Css(u) ∩ Sn−1 . 

Proof. We already know that φ∗u is smooth, so Css(φ∗u) ⊂ Sn−1 . Thus, 
∈ Css(u) then ω /we need to show that if ω ∈ Sn−1 and ω / ∈ Css(φ ∗ u). 

Fix such a point ω ∈ Sn−1 \ Css(u) and take a closed set Γ ⊂ Sn−1 

which is a neighbourhood of ω but which is still disjoint from Css(u) and 
then apply Lemma 12.7. The two terms φ ∗ u2, where u2 ∈ S(Rn) and 

1 where u� (Rn) are both in S(Rn) so we can assume that uφ ∗u� 1 ∈ Cc−∞
has the support properties of u��1. In particular there is a smaller closed 
subset Γ1 ⊂ Sn−1 which is still a neighbourhood of ω but which does 
not meet Γ2, which is the closure of the complement of Γ. If we replace 
these Γi by the closed cones of which they are the ‘cross­sections’ then 
we are in the situation of (12.23) and (12.23), except for the signs. 
That is, there is a constant c > 0 such that 

(12.26)	 x− y ≥ c( x + y ).| | | | | |
Now, we can assume that there is a cutoff function ψR which has 

support in Γ2 and is such that u = ψRu. For any conic cutoff, ψR, with 
support in Γ1 

R(φ ∗ u) = �ψRu, φ(x− ·)� = u(y), ψR(y)ψ�(12.27)	 ψ� R(x)φ(x− y)�. 
The continuity of u means that this is estimated by some Schwartz 
seminorm 

R(x)φ(x− y)) (1 + y )k(12.28)	 sup y (ψR(y)ψ� | | |
y,|α|≤k 

|Dα 

≤ CN�φ� sup(1 + x + y )−N(1 + y )k ≤ CN�φ�(1 + x )−N+k 

y 
|	 | | | | | | |

for some Schwartz seminorm on φ. Here we have used the estimate 
(12.24), in the form (12.26), using the properties of the supports of 
ψ� and ψR. Since this is true for any N and similar estimates hold R 

for the derivatives, it follows that ψ�	 ) and hence that R(u ∗ φ) ∈ S(Rn	

�ω /∈ Css(u ∗ φ). 

Corollary 12.9. Under the conditions of Lemma 12.6 

(12.29) Css(u ∗ v) ⊂ (singsupp(u) + singsupp(v)) ∪ (Css(v) ∩ Sn−1). 

Proof. We can apply Lemma 12.8 to the first term in (12.21) to con­
clude that it has conic singular support contained in the second term 
in (12.29). Thus it is enough to show that (12.29) holds when u ∈ 
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C−∞(Rn). In that case we know that the singular support of the con­c 

volution is contained in the first term in (12.29), so it is enough to 
consider the conic singular support in the sphere at infinity. Thus, if 
∈ Css(v) we need to show that ω /ω / ∈ Css(u ∗ v). Using Lemma 12.7 

we can decompose v = v1 + v2 + v3 as a sum of a Schwartz term, a 
compact supported term and a term which does not have ω in its conic 
support. Then u ∗ v1 is Schwartz, u ∗ v2 has compact support and sat­
isfies (12.29) and ω is not in the cone support of u ∗ v3. Thus (12.29) 
holds in general. � 

Lemma 12.10. If u, v ∈ S �(Rn) and ω ∈ Css(u) ∩ Sn−1 =⇒ −ω /∈
Css(v) then their convolution is defined unambiguously, using the pair­
ing in Lemma 12.5, by 

(12.30) u ∗ v(φ) = u(ˇ ).v ∗ φ) ∀ φ ∈ S(Rn

v(x) = v(−x), Css(ˇProof. Since ˇ v) = −Css(v) so applying Lemma 12.8 
we know that 

(12.31) Css(v̌ ∗ φ) ⊂ −Css(v) ∩ Sn−1 . 

Thus, Css(v) ∩ Css(v̌ ∗ φ) = ∅ and the pairing on the right in (12.30) 
is well­defined by Lemma 12.5. Continuity follows from your work in 
Problem 78. � 

In Problem 79 I ask you to get a bound on Css(u ∗ v) ∩ Sn−1 under 
the conditions in Lemma 12.10. 

Let me do what is actually a fundamental computation. 

Lemma 12.11. For a conic cutoff, ψR, where ψ ∈ C∞(Sn−1), 

(12.32) Css(� .ψR) ⊂ {0}

Proof. This is actually much easier than it seems. Namely we already 
know that Dα(ψR) is smooth and homogeneous of degree −|α near|
infinity. From the same argument it follows that 

(12.33) Dα(x βψR) ∈ L2(Rn) if α > β + n/2| | | |
since this is a smooth function homogeneous of degree less than −n/2 
near infinity, hence square­integrable. Now, taking the Fourier trans­
form gives 

(12.34) ξαDβ(� | | | |ψR) ∈ L2(Rn) ∀ α > β + n/2. 

If we localize in a cone near infinity, using a (completely unrelated) 
cutoff ψR� (ξ) then we must get a Schwartz function since 
(12.35) 

α|ξ|| |ψ� (ξ)Dβ(� R� (ξ)
� ).ψR) ∈ L2(Rn) ∀ α > β + n/2 = ψ�R� | | | | ⇒ ψR ∈ S(Rn
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Indeed this argument applies anywhere that ξ = 0 and so shows that 
(12.32) holds. 

�
� 

Now, we have obtained some reasonable looking conditions under 
which the product uv or the convolution u∗v of two elements of S �(Rn) 
is defined. However, reasonable as they might be there is clearly a flaw, 
or at least a deficiency, in the discussion. We know that in the simplest 
of cases, 

(12.36) � = u�u ∗ v �v. 
Thus, it is very natural to expect a relationship between the conditions 
under which the product of the Fourier transforms is defined and the 
conditions under which the convolution is defined. Is there? Well, not 
much it would seem, since on the one hand we are considering the rela­
tionship between Css(�u) and Css(v�) and on the other the relationship 
between Css(u) ∩ Sn−1 and Css(v) ∩ Sn−1 . If these are to be related, 
we would have to find a relationship of some sort between Css(u) and 
Css(�u). As we shall see, there is one but it is not very strong as can 
be guessed from Lemma 12.11. This is not so much a bad thing as a 
sign that we should look for another notion which combines aspects of 
both Css(u) and Css(�u). This we will do through the notion of wave­
front set. In fact we define two related objects. The first is the more 
conventional, the second is more natural in our present discussion. 

Definition 12.12. If u ∈ S �(Rn) we define the wavefront set of u to 
be 

(12.37) WF(u) = {(x, ω) ∈ Rn × Sn−1; 

� ∈ Css(�(Rn), φ(x) = 0, ω / φu)}� 
c∃ φ ∈ C∞

and more generally the scattering wavefront set by 

(12.38) WFsc (u) = WF(u) ∪ {(ω, p) ∈ Sn−1 × Bn; 

∈ Css(�), ψ(ω) = 0, R > 0 such that p / ψRu)}� .∃ ψ ∈ C∞(Sn �

So, the definition is really always the same. To show that (p, q) /∈
WFsc(u) we need to find ‘a cutoff Φ near p’ – depending on whether 
p ∈ Rn or p ∈ Sn−1 this is either Φ = (Rn) with F = φ(p) = 0cφ ∈ C∞ �

� ∈ Css(�or a ψR where ψ ∈ C∞(Sn−1) has ψ(p) = 0 – such that q / Φu). 
One crucial property is 

Lemma 12.13. If (p, q) /∈ WFsc(u) then if p ∈ Rn there exists a 
neighbourhood U ⊂ Rn of p and a neighbourhood U ⊂ Bn of q such 

that for all φ ∈ C∞(Rn) with support in U, U � ∩Css(�φu) = ∅; similarlyc 
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if p ∈ Sn−1 then there exists a neigbourhood Ũ ⊂ Bn of p such that 

ψRu) = ∅ if Csp(ωR) ⊂ ˜U � ∩ Css(� U. 

Proof. First suppose p ∈ Rn . From the definition of conic singular sup­
port, (12.37) means precisely that there exists ψ ∈ C∞(Sn−1), ψ(ω) = 0 
and R such that 

(12.39) ψR(�φu) ∈ S(Rn). 

Since we know that �φu ∈ C∞(Rn), this is actually true for all R > 0 
as soon as it is true for one value. Furthermore, if φ� ∈ C∞(Rn) hasc 

� ∈ Css(� ∈ Css(�supp(φ�) ⊂ {φ = 0} then ω / φ�u) follows from ω / φu). 
Indeed we can then write φ� = µφ where µ ∈ C∞(Rn) so it suffices c 

to show that if v ∈ C−∞(Rn) has ω / ∈ Css(�∈ Css(v�) then ω / µv) ifc 

µv = (2π)−nυ ∗ � �(Rn). Since � u where υ̌ = µ ∈ S(Rn), applying cµ ∈ C∞

∈ Css(�Lemma 12.8 we see that Css(υ ∗ �v) ⊂ Css(�v), so indeed ω / φ�u). 
The case that p ∈ Sn−1 is similar. Namely we have one cut­off ψR 

∈ Css(�with ψ(p) = 0 and q / ωRu). We can take U = ψR+10 = 0} since if 
ψ� has conic support in U then ψ� = ψ��R�ψR for some ψ�� ∈ C∞(Sn−1).R� R� 

Thus 

(12.40) ψ� u = v ∗� R�� .
� ψRu, v̌ = ω��R� 

From Lemma 12.11 and Corollary12.9 we deduce that 

ψ� u) ⊂ Css(�(12.41) Css(� ωRu)R� 

and hence the result follows with U � a small neighourhood of q. � 

Proposition 12.14. For any u ∈ S �(Rn), 

(12.42) WFsc (u) ⊂ ∂(Bn × Bn) = (Bn × Sn−1) ∪ (Sn−1 × Bn) 

= (Rn × Sn−1) ∪ (Sn−1 × Sn−1) ∪ (Sn−1 × Rn) 

and WF(u) ⊂ Rn are closed sets and under projection onto the first 
variable 
(12.43) 

π1(WF(u)) = singsupp(u) ⊂ Rn, π1(WFsc(u)) = Css(u) ⊂ Bn . 

Proof. To prove the first part of (12.43) we need to show that if (x̄, ω) /∈
¯ x /WF(u) for all ω ∈ Sn−1 with x ∈ Rn fixed, then ¯ ∈ singsupp(u). The 

definition (12.37) means that for each ω ∈ Sn−1 there exists φω ∈ 
(Rn) with φω(¯ ∈ Css(�x) = 0 such that ω / φωu). Since Css(φu) iscC∞ �

closed and Sn−1 is compact, a finite number of these cutoffs, φj ∈ 
(Rn), can be chosen so that φj(¯ � φju)x) = 0 with the Sn−1 \ Css(�cC∞

covering Sn−1 . Now applying Lemma 12.13 above, we can find one 
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(Rn), with support in j{φj(x) = 0} and φ(x̄) = 0, such that φ ∈ C∞ � �
φu) ⊂ Css(�Css(� φju) for each j and hence φu ∈ S(Rn) (since it is 

¯ ∈ singsupp(u). Thealready smooth). Thus indeed it follows that x /

converse, that ¯ ∈ singsupp(u) implies (¯ ∈WF(u) for all ω ∈ Sn−1
x / x, ω) /
is immediate. 

The argument to prove the second part of (12.43) is similar. Since, by 
definition, WFsc(u)∩(Rn ×Bn) = WF(u) and Css(u)∩Rn = singsupp(u) 
we only need consider points in Css(u)∩Sn−1 . Now, we first check that 
if θ /∈ Css(u) then {θ} × Bn ∩WFsc(u) = . By definition of Css(u)∅
there is a cut­off ψR, where ψ ∈ C∞(Sn−1) and ψ(θ) = 0, such that 
ψRu ∈ S(Rn). From (12.38) this implies that (θ, p) /∈ WFsc(u) for all 
p ∈ Bn . 

Now, Lemma 12.13 allows us to apply the same argument as used 
above for WF . Namely we are given that (θ, p) /∈ WFsc(u) for all 
p ∈ Bn . Thus, for each p we may find ψR, depending on p, such that 

∈ Css(�ψ(θ) =� 0 and p / ψRu). Since Bn is compact, we may choose a 

finite subset of these conic localizers, ψ
(j) 

such that the intersection Rj 

of the corresponding sets Css( ψ
(j)
u), is empty, i.e. their complements Rj 

cover Bn . Now, using Lemma 12.13 we may choose one ψ with support 
in the intersection of the sets {ψ(j) = 0} with ψ(θ) = 0 and one R 

such that Css( � ∅ψRu) = , but this just means that ψRu ∈ S(Rn) and so 
θ /∈ Css(u) as desired. 

The fact that these sets are closed (in the appropriate sets) follows 
directly from Lemma12.13. � 

Corollary 12.15. For u ∈ S �(Rn), 

(12.44) WFsc(u) = ∅ ⇐⇒ u ∈ S(Rn). 

Let me return to the definition of WFsc (u) and rewrite it, using what 
we have learned so far, in terms of a decomposition of u. 

Proposition 12.16. For any �(Rn) and (p, q) ∈ ∂(Bn × Bn),u ∈ S

(12.45) (p, q) /∈WFsc(u) ⇐⇒ 

∈ Css(u1), q /u = u1 + u2, u1, u2 ∈ S �(Rn), p / ∈ Css(u�2). 
Proof. For given (p, q) / φ ∈ C∞∈ WFsc(u), take Φ = (Rn) with φ ≡ 1c 

near p, if p ∈ Rn or Φ = ψR with ψ ∈ C∞(Sn−1) and ψ ≡ 1 near p, if 
p ∈ Sn−1 . In either case p /∈ Css(u1) if u1 = (1 − Φ)u directly from the 
definition. So u2 = u− u1 = Φu. If the support of Φ is small enough it 
follows as in the discussion in the proof of Proposition 12.14 that 

(12.46) q /∈ Css(u�2). 
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Thus we have (12.45) in the forward direction. 
For reverse implication it follows directly that (p, q) /∈WFsc (u1) and 

that (p, q) /∈WFsc(u2).	 � 

This restatement of the definition makes it clear that there a high 
degree of symmetry under the Fourier transform 

Corollary 12.17. For any u ∈ S �(Rn), 

(12.47)	 (p, q) ∈WFsc(u)) ⇐⇒ (q,−p) ∈WFsc (û). 

Proof. I suppose a corollary should not need a proof, but still . . . . The 
statement (12.47) is equivalent to 

∈WFsc(u)) = ⇒ (q,−p) / u)(12.48) (p, q) /	 ∈WFsc(ˆ

since the reverse is the same by Fourier inversion. By (12.45) the 
condition on the left is equivalent to u = u1 + u2 with p /∈ Css(u1), 
q /∈ Css(u�2). Hence equivalent to 

(12.49) u� = v1 + v2, v1 = u�2, v�2 = (2π)−n ǔ1 

∈ Css(v1), −p /so q / ∈ Css(v�2) which proves (12.47). � 

Now, we can exploit these notions to refine our conditions under 
which pairing, the product and convolution can be defined. 

Theorem 12.18. For u, v ∈ S �(Rn) 

(12.50)	 uv ∈ S �(Rn) is unambiguously defined provided 

(p, ω) ∈WFsc (u) ∩ (Bn × Sn−1) = ⇒ (p,−ω) /∈WFsc(v) 

and 

(12.51)	 u ∗ v ∈ S �(Rn) is unambiguously defined provided 

(θ, q) ∈WFsc(u) ∩ (Sn−1 × Bn) = ⇒ (−θ, q) /∈WFsc(v). 

Proof. Let us consider convolution first. The hypothesis, (12.51) means 
that for each θ ∈ Sn−1 

(12.52) 
{q ∈ Bn−1; (θ, q) ∈WFsc(u)} ∩ {q ∈ Bn−1; (−θ, q) ∈WFsc (v)} = .∅

Now, the fact that WFsc is always a closed set means that (12.52) 
remains true near θ in the sense that if U ⊂ Sn−1 is a sufficiently small 
neighbourhood of θ then 

(12.53)	 {q ∈ Bn−1;∃ θ� ∈ U, (θ�, q) ∈WFsc(u)} 
;∃ θ�� ∈ U, (−θ��, q) ∈WFsc(v)} = .∩ {q ∈ Bn−1	 ∅
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The compactness of Sn−1 means that there is a finite cover of Sn−1 by 
such sets Uj. Now select a partition of unity ψi of Sn−1 which is not 
only subordinate to this open cover, so each ψi is supported in one of 
the Uj but satisfies the additional condition that 

(12.54) supp(ψi) ∩ (− supp(ψi )) = ∅ =� ⇒ 

supp(ψi) ∪ (− supp(ψi )) ⊂ Uj for some j. 

Now, if we set ui = (ψi)Ru, and vi = (ψi )Rv, we know that u − ui 
i 

has compact support and similarly for v. Since convolution is already 
known to be possible if (at least) one factor has compact support, it 
suffices to define ui ∗ vi� for every i, i�. So, first suppose that supp(ψi)∩
(− supp(ψi )) = ∅. In this case we conclude from (12.54) that 

(12.55) Css( u�i) ∩ Css(v�i� ) = ∅. 
Thus we may define 

(12.56) � = u�iv�i�ui ∗ vi� 
using (12.20). On the other hand if supp ψi ∩ (− supp(ψi )) = ∅ then 

(12.57) Css(ui) ∩ (− Css(vi )) ∩ Sn−1 =� ∅ 
and in this case we can define ui ∗ vi using Lemma 12.10. 

Thus with such a decomposition of u and v all terms in the convolu­
tion are well­defined. Of course we should check that this definition is 
independent of choices made in the decomposition. I leave this to you. 

That the product is well­defined under condition (12.50) now follows 
if we define it using convolution, i.e. as � = f ∗ g, f = u, ǧ = �(12.58) uv � v. 

Indeed, using (12.47), (12.50) for u and v becomes (12.51) for f and 
g. � 
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13. Homogeneous distributions 

Next time I will talk about homogeneous distributions. On R the 
functions 

sx x > 0s x = t 0 x < 0 

where S ∈ R, is locally integrable (and hence a tempered distribution) 
precisely when S > −1. As a function it is homogeneous of degree s. 
Thus if a > 0 then 

s s(ax)s = a xt .t

s
Thinking of x = µs as a distribution we can set this as t 

µs(ax)(ϕ) = µs(ax)ϕ(x) dx 

dx 
= µs(x)ϕ(x/a) 

a 
s = a µs(ϕ) . 

1Thus if we define ϕa(x) = 
a 
ϕ(x ), for any a > 0, ϕ ∈ S(R) we can ask 

a 
whether a distribution is homogeneous: 

µ(ϕa) = a s µ(ϕ) ∀ ϕ ∈ S(R). 
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16. Spectral theorem 

For a bounded operator T on a Hilbert space we define the spectrum 
as the set 

(16.1) spec(T ) = z ∈ C;T − z Id is not invertible}.{

Proposition 16.1. For any bounded linear operator on a Hilbert space 
spec(T ) ⊂ C is a compact subset of {|z .| ≤ �T�}

Proof. We show that the set C \ spec(T ) (generally called the resolvent 
set of T ) is open and contains the complement of a sufficiently large 
ball. This is based on the convergence of the Neumann series. Namely 
if T is bounded and �T� < 1 then 

∞

(16.2) (Id −T )−1 = T j 

j=0 

converges to a bounded operator which is a two­sided inverse of Id −T. 
Indeed, �T j� ≤ �T�j so the series is convergent and composing with 
Id −T on either side gives a telescoping series reducing to the identity. 

Applying this result, we first see that 

(16.3) (T − z) = z(Id −T/z)−
is invertible if z > �T�. Similarly, if (T − z0)

−1 exists for some z0 ∈ C| |
then 

(16.4) (T−z) = (T−z0)−(z−z0) = (T−z0)
−1(Id −(z−z0)(T−z0)

−1) 

exists for � < 1. �|z − z0|�(T − z0)
−1

In general it is rather difficult to precisely locate spec(T ). 
However for a bounded self­adjoint operator it is easier. One sign of 

this is the the norm of the operator has an alternative, simple, charac­
terization. Namely 

(16.5) if A∗ = A then sup �Aφ, φ�| = .�A�
�φ�=1

If a is this supermum, then clearly a ≤ �A�. To see the converse, choose 
any φ, ψ ∈ H with norm 1 and then replace ψ by eiθψ with θ chosen 
so that �Aφ, ψ� is real. Then use the polarization identity to write 

(16.6) 4�Aφ, ψ� = �A(φ + ψ), (φ + ψ)� − �A(φ − ψ), (φ − ψ)� 
+ i�A(φ + iψ), (φ + iψ)� − i�A(φ − iψ), (φ − iψ)�. 

Now, by the assumed reality we may drop the last two terms and see 
that 

2(16.7) 4|�Aφ, ψ�| ≤ a(�φ + ψ�2 + �φ− ψ� ) = 2a(�φ�2 + �ψ�2) = 4a. 
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Thus indeed �A� = sup�φ�=�ψ�=1 |�Aφ, ψ�| = a. 
We can always subtract a real constant from A so that A� = A − t 

satisfies 

(16.8)	 − inf �φ, φ� = sup �A�φ, φ� = �A� . 
�φ�=1

�A
�φ�=1

�

Then, it follows that A� ± �A�� is not invertible. Indeed, there exists a 
sequence φn, with �φn� = 1 such that �(A� ��)φn, φn� → 0. Thus − �A
(16.9) 

2 2�(A� ��)φn� = −2�A�φn, φn�+�A�φn� +�A� �φn, φn�+2�A� 0.−�A 2 � ≤ −2�A �2 →
This shows that A� �� cannot be invertible and the same argument −�A
works for A� + �A� . For the original operator A if we set 

inf(16.10) m = 
�φ�=1

�Aφ, φ� M = sup �Aφ, φ�
�φ�=1

then we conclude that neither A−m Id nor A−M Id is invertible and 
max(−m, M).�A� =


Proposition 16.2. If A is a bounded self­adjoint operator then, with

m and M defined by (16.10),


(16.11) m} ∪ {M} ⊂ spec(A) ⊂ [m, M ].{

Proof. We have already shown the first part, that m and M are in 
the spectrum so it remains to show that A − z is invertible for all 
z ∈ C \ [m, M ]. 

Using the self­adjointness 

(16.12) Im�(A − z)φ, φ� = − Im z�φ�2 . 
This implies that A − z is invertible if z ∈ C \ R. First it shows that 
(A−z)φ = 0 implies φ = 0, so A−z is injective. Secondly, the range is 
closed. Indeed, if (A − z)φn → ψ then applying (16.12) directly shows 
that �φn� is bounded and so can be replaced by a weakly convergent 
subsequence. Applying (16.12) again to φn − φm shows that the se­
quence is actually Cauchy, hence convergens to φ so (A− z)φ = ψ is in 
the range. Finally, the orthocomplement to this range is the null space 
of A∗ − z̄, which is also trivial, so A− z is an isomorphism and (16.12) 
also shows that the inverse is bounded, in fact 

1 
(16.13)	 �(A − z)−1 .� ≤ 

Im z||
When z ∈ R we can replace A by A� satisfying (16.8). Then we have 

to show that A� − z is inverible for z , but that is shown in the | | > �A�	
�proof of Proposition 16.1. 
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The basic estimate leading to the spectral theorem is: 

Proposition 16.3. If A is a bounded self­adjoint operator and p is a 
real polynomial in one variable, 

N

(16.14)	 p(t) = cit
i , cN = 0, 

i=0 

N

then p(A) = ciA
i satisfies 

i=0 

(16.15)	 sup p(t)|.�p(A)� ≤ 
t∈[m,M ]

|

Proof. Clearly, p(A) is a bounded self­adjoint operator. If s /∈ p([m,M ]) 
then p(A) − s is invertible. Indeed, the roots of p(t) − s must cannot 
lie in [m.M ], since otherwise s ∈ p([m,M ]). Thus, factorizing p(s)− t 
we have 
(16.16) 

N

p(t)− s = cN (t− ti(s)), ti(s) / [m,M ] = ⇒ (p(A)− s)−1 exists∈
i=1 

since p(A) = cN (A − ti(s)) and each of the factors is invertible. 
i 

Thus spec(p(A)) ⊂ p([m,M ]), which is an interval (or a point), and 
from Proposition 16.3 we conclude that �p(A)� ≤ sup p([m,M ]) which 
is (16.15). � 

Now, reinterpreting (16.15) we have a linear map 

(16.17)	 P(R) � p �−→ p(A) ∈ B(H) 

from the real polynomials to the bounded self­adjoint operators which 
is continuous with respect to the supremum norm on [m,M ]. Since 
polynomials are dense in continuous functions on finite intervals, we 
see that (16.17) extends by continuity to a linear map 
(16.18)

C([m,M ]) � f �−→ f(A) ∈ B(H), �f(A)� ≤ �f�[m,M ], fg(A) = f(A)g(A)


where the multiplicativity follows by continuity together with the fact 
that it is true for polynomials. 

Now, consider any two elements φ, ψ ∈ H. Evaluating f(A) on φ and 
pairing with ψ gives a linear map 

(16.19) C([m,M ]) � f �−→ �f(A)φ, ψ� ∈ C. 
This is a linear functional on C([m,M ]) to which we can apply the Riesz 
representatin theorem and conclude that it is defined by integration 
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against a unique Radon measure µφ,ψ : 

(16.20)	 �f(A)φ, ψ� = fdµφ,ψ . 
[m,M ] 

The total mass µφ,ψ | of this measure is the norm of the functional. |
Since it is a Borel measure, we can take the integral on −∞, b] for any 
b ∈ R ad, with the uniqueness, this shows that we have a continuous 
sesquilinear map 
(16.21) 

Pb(φ, ψ) : H×H � (φ, ψ) �−→ dµφ,ψ ∈ R, Pb(φ, ψ)| ≤ �A��φ��ψ�.|
[m,b] 

From the Hilbert space Riesz representation theorem it follows that 
this sesquilinear form defines, and is determined by, a bounded linear 
operator 

(16.22) Pb(φ, ψ) = �Pbφ, ψ�, �Pb� ≤ �A�. 
In fact, from the functional calculus (the multiplicativity in (16.18)) 
we see that 

(16.23) P ∗ = Pb, P
2 = Pb, �Pb� ≤ 1,b b 

so Pb is a projection. 
Thus the spectral theorem gives us an increasing (with b) family of 

commuting self­adjoint projections such that µφ,ψ ((−∞, b]) = �Pbφ, ψ�
determines the Radon measure for which (16.20) holds. One can go 
further and think of Pb itself as determining a measure 

(16.24)	 µ((−∞, b]) = Pb 

which takes values in the projections on H and which allows the func­
tions of A to be written as integrals in the form 

(16.25)	 f(A) = fdµ 
[m,M ] 

of which (16.20) becomes the ‘weak form’. To do so one needs to 
develop the theory of such measures and the corresponding integrals. 
This is not so hard but I shall not do it. 
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17. Problems 

Problem 1. Prove that u+, defined by (1.10) is linear. 

Problem 2. Prove Lemma 1.8. 
Hint(s). All functions here are supposed to be continuous, I just 

don’t bother to keep on saying it. 

(1) Recall, or check, that the local compactness of a metric space 
X means that for each point x ∈ X there is an � > 0 such that 
the ball { y ∈ X; d(x, y) ≤ δ} is compact for δ ≤ �. 

(2) First do the case n = 1, so K � U is a compact set in an open 
subset. 
(a) Given δ > 0, use the local compactness of X, to cover K 

with a finite number of compact closed balls of radius at 
most δ. 

(b) Deduce	 that if � > 0 is small enough then the set { x ∈
X; d(x,K) ≤ �} , where 

d(x,K) = inf d(x, y), 
y∈K 

is compact. 
(c) Show that d(x,K), for K compact, is continuous. 
(d) Given � > 0 show that there is a continuous function g� : 

R −→ [0, 1] such that g�(t) = 1 for t ≤ �/2 and g�(t) = 0 
for t > 3�/4. 

(e) Show that f = g� ◦ d(· , K) satisfies the conditions for n = 1 
if � > 0 is small enough. 

(3)	 Prove the general case by induction over n. 
(a) In the general case, set K � = K ∩ U1 

� and show that the 
inductive hypothesis applies to K � and the Uj for j > 1; let 
fj
�, j = 2, . . . , n be the functions supplied by the inductive 

assumption and put f � = j≥2 fj
�. 

1(b) Show that K1 = K ∩ { f � ≤ 
2
} is a compact subset of U1. 

(c) Using the case n = 1 construct a function F for K1 and 
U1. 

(d) Use the case n = 1 again to find G such that G = 1 on K 
1and supp(G) � { f � + F > 
2
} . 

(e) Make sense of the functions 

G G 
f1 = F , fj = fj

� , j ≥ 2 
f � + F f � + F

and show that they satisfies the inductive assumptions. 
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Problem 3. Show that σ­algebras are closed under countable intersec­
tions. 

Problem 4. (Easy) Show that if µ is a complete measure and E ⊂ F 
where F is measurable and has measure 0 then µ(E) = 0. 

Problem 5. Show that compact subsets are measurable for any Borel 
measure. (This just means that compact sets are Borel sets if you 
follow through the tortuous terminology.) 

Problem 6. Show that the smallest σ­algebra containing the sets 

(a, ∞] [ ,∞]⊂ −∞

for all a ∈ R, generates what is called above the ‘Borel’ σ­algebra on 
[ ,∞].−∞

Problem 7. Write down a careful proof of Proposition 1.1. 

Problem 8. Write down a careful proof of Proposition 1.2. 

Problem 9. Let X be the metric space 

X =	 {1, 2, . . .}} ⊂ R{0} ∪ {1/n;n ∈ N = 

with the induced metric (i.e. the same distance as on R). Recall why 
X is compact. Show that the space C0(X) and its dual are infinite 
dimensional. Try to describe the dual space in terms of sequences; at 
least guess the answer. 

Problem 10. For the space Y = N = {1, 2, . . .} ⊂ R, describ e C0(Y ) 
and guess a description of its dual in terms of sequences. 

Problem 11. Let (X,M, µ) be any measure space (so µ is a measure 
on the σ­algebra M of subsets of X). Show that the set of equivalence 
classes of µ­integrable functions on X, with the equivalence relation 
given by (4.8), is a normed linear space with the usual linear structure 
and the norm given by 

f dµ.�f� = | |
X 

Problem 12. Let (X,M) be a set with a σ­algebra. Let µ : M→ R be 
a finite measure in the sense that µ(φ) = 0 and for any {Ei}∞i=1 ⊂ M 
with Ei ∩ Ej = φ for i = j, 

∞ ∞

(17.1)	 µ Ei = µ(Ei) 
i=1 i=1 
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with the series on the right always absolutely convergenct (i.e., this is 
part of the requirement on µ). Define 

∞

(17.2)	 µ (E) = sup |µ(Ei)|| |
i=1 

for E ∈ M, with the supremum over all measurable decompositions �
E = ∞ Ei with the	Ei disjoint. Show that |µ| is a finite, positive i=1 

measure. � �∞Hint 1. You must show that |µ| (E) = i=1�|µ| (Ai) if Ai = E,i 

Ai ∈ M being disjoint. Observe that if Aj = Ajl is a measurable l 

decomposition of Aj then together the Ajl give a decomposition of E. � 
Similarly, if E = j Ej is any such decomposition of E then Ajl = 
Aj ∩ El gives such a decomposition of Aj. 

Hint 2. See [5] p. 117! 

Problem 13. (Hahn Decomposition) 
With assumptions as in Problem 12: 

1	 1(1) Show that µ+ = 
2
( µ + µ) and µ− = 

2
( µ − µ) are positive | |	 | |

measures, µ = µ+ − µ−. Conclude that the definition of a 
measure based on (4.16) is the same as that in Problem 12. 

(2) Show that µ± so constructed are orthogonal in the sense that 
there is a set	E ∈M such that µ−(E) = 0, µ+(X \ E) = 0. 

Hint. Use the definition of µ to show that for any F ∈ M | |
and any � > 0 there is a subset F � , F � ⊂ F such that ∈ M
µ+(F �) ≥ µ+(F ) − � and µ−(F �) ≤ �. Given δ > 0 apply 
this result repeatedly (say with � = 2−nδ) to find a decreas­
ing sequence of sets F1 = X, Fn , Fn+1 ⊂ Fn such that ∈ M
µ+(Fn) ≥ µ+(Fn−1)− 2−nδ and µ−(Fn) ≤ 2−nδ. Conclude that 
G = Fn has µ+(G) ≥ µ+(X) − δ and µ−(G) = 0. Now let n � 
Gm be chosen this way with δ = 1/m. Show that E = Gmm 

is as required. 

Problem 14. Now suppose that µ is a finite, positive Radon measure 
on a locally compact metric space X (meaning a finite positive Borel 
measure outer regular on Borel sets and inner regular on open sets). 
Show that µ is inner regular on all Borel sets and hence, given � > 0 
and E ∈ B(X) there exist sets K ⊂ E ⊂ U with K compact and U 
open such that µ(K) ≥ µ(E)− �, µ(E) ≥ µ(U)− �. 

Hint. First take U open, then use its inner regularity to find K 
with K � � U and µ(K �) ≥ µ(U) − �/2. How big is µ(E\K �)? Find 
V ⊃ K � E with V open and look at K = K � V .\	 \
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Problem 15. Using Problem 14 show that if µ is a finite Borel measure 
on a locally compact metric space X then the following three conditions 
are equivalent 

(1) µ = µ1−µ2 with µ1 and µ2 both positive finite Radon measures. 
(2) |µ| is a finite positive Radon measure. 
(3) µ+ and µ− are finite positive Radon measures. 

Problem 16. Let � � be a norm on a vector space V . Show that �u� = 
(u, u)1/2 for an inner product satisfying (5.1) ­ (5.4) if and only if the 
parallelogram law holds for every pair u, v ∈ V . 

Hint (From Dimitri Kountourogiannis) 
If � · � comes from an inner product, then it must satisfy the polari­

sation identity: 

2(x, y) = 1/4(�x + y�2 x + iy�2 x − iy�2)− �x − y� − i� − i�

i.e, the inner product is recoverable from the norm, so use the RHS 
(right hand side) to define an inner product on the vector space. You 
will need the paralellogram law to verify the additivity of the RHS. 
Note the polarization identity is a bit more transparent for real vector 
spaces. There we have 

2(x, y) = 1/2(�x + y�2 x − y� )− �

both are easy to prove using � 2 = (a, a).a�

Problem 17. Show (Rudin does it) that if u : Rn C has continuous →
partial derivatives then it is differentiable at each point in the sense of 
(6.5). 

Problem 18. Consider the function f(x) = x�−1 = (1+ x . Show � | | 2)−1/2 

that 

∂f 
= lj(x) · �x�−3 

∂xj 

with lj(x) a linear function. Conclude by induction that x�−1 

k 
� ∈ 

C0 (Rn) for all k. 

2Problem 19. Show that exp(− x| | ) ∈ S(Rn). 

Problem 20. Prove (7.7), probably by induction over k. 

Problem 21. Prove Lemma 7.4. 
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Hint. Show that a set U � 0 in S(Rn) is a neighbourhood of 0 if and 
only if for some k and � > 0 it contains a set of the form ⎫ ⎪⎪⎬ 

⎧ ⎪⎪⎨ 
αDβϕ) ;ϕ ∈ S(Rn sup
 < �x . ⎪⎪⎩


⎪⎪⎭
|α|≤k, 

|β|≤k 

Problem 22. Prove (8.7), by estimating the integrals. 

Problem 23. Prove (8.9) where 

� ∂ψ 
) dt .ψj(z;x ) = (z + tx


∂zj0 

Problem 24. Prove (8.20). You will probably have to go back to first 
principles to do this. Show that it is enough to assume u ≥ 0 has 
compact support. Then show it is enough to assume that u is a simple, 
and integrable, function. Finally look at the definition of Lebesgue 
measure and show that if E ⊂ Rn is Borel and has finite Lebesgue 
measure then 

lim µ(E\(E + t)) = 0 
|t|→∞ 

where µ = Lebesgue measure and 

E + t = {p ∈ Rn ; p� + t , p� ∈ E} . 

Problem 25. Prove Leibniz’ formula 

α 
Dα 

x(ϕψ) = Dα
xϕ dα−β x ψ·

β 
β≤α 

for any C∞ functions and ϕ and ψ. Here α and β are multiindices, 
β ≤ α βj ≤ αj for each j? andmeans


α αj
= . 

β 
j 

βj 

I suggest induction! 

Problem 26. Prove the generalization of Proposition 8.10 that u ∈
�(Rn), supp(w) ⊂ {0} implies there are constants cα , α ≤ m, forS | |

m, such thatsome 

u = cαD
αδ . 

|α|≤m 
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Hint This is not so easy! I would be happy if you can show that 
u ∈ M(Rn), supp u ⊂ {0} implies u = cδ. To see this, you can show 
that 

), ϕ(0) = 0
ϕ ∈ S(Rn


) , ϕj(x) = 0 in x ≤ �j > 0(↓ 0) ,⇒ ∃ϕj ∈ S(Rn | |
sup ϕj − ϕ 0 as j →∞ .| | →

To prove the general case you need something similar — that given m, 
if ϕ ∈ S(Rn) and Dα

xϕ(0) = 0 for α ≤ m then ∃ϕj ∈ S(Rn), ϕj = 0| |
min x ≤ �j , �j ↓ 0 such that ϕj → ϕ in the C norm. | |

Problem 27. If m ∈ N, m� > 0 show that u ∈ Hm(Rn) and Dαu ∈
Hm� 

(Rn) for all α ≤ m implies u ∈ Hm+m� 
(Rn). Is the converse true?| |

Problem 28. Show that every element u ∈ L2(Rn) can be written as a 
sum 

n

u = u0 + Djuj , uj ∈ H1(Rn) , j = 0, . . . , n . 
j=1 

Problem 29. Consider for n = 1, the locally integrable function (the 
Heaviside function), 

H(x) =
0 x ≤ 0 
1 x > 1 . 

Show that DxH(x) = cδ; what is the constant c? 

Problem 30. For what range of orders m is it true that δ ∈ Hm(Rn) , δ(ϕ) = 
ϕ(0)? 

Problem 31. Try to write the Dirac measure explicitly (as possible) in 
the form (10.8). How many derivatives do you think are necessary? 

Problem 32. Go through the computation of ∂E again, but cutting out 
2a disk {x2 + y ≤ �2} instead. 

Problem 33. Consider the Laplacian, (11.4), for n = 3. Show that 
E = c(x2 + y2)−1/2 is a fundamental solution for some value of c. 

Problem 34. Recall that a topology on a set X is a collection F of 
subsets (called the open sets) with the properties, φ ∈ F , X ∈ F and 
F is closed under finite intersections and arbitrary unions. Show that 
the following definition of an open set U ⊂ S �(Rn) defines a topology: 

∀ u ∈ U and all ϕ ∈ S(Rn) ∃� > 0 st. 

(u� − u)(ϕ) < �⇒ u� ∈ U . | |
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This is called the weak topology (because there are very few open 
sets). Show that uj → u weakly in S �(Rn) means that for every open 
set U � u ∃N st. uj ∈ U ∀ j ≥ N . 

Problem 35. Prove (11.18) where u ∈ S �(Rn) and ϕ, ψ ∈ S(Rn). 

Problem 36. Show that for fixed v ∈ S �(Rn) with compact support 

S(Rn )) � ϕ �→ v ∗ ϕ ∈ S(Rn

is a continuous linear map. 

Problem 37. Prove the ?? to properties in Theorem 11.6 for u∗v where 
�(Rn) and v ∈ S �(Rn) with at least one of them having compact u ∈ S

support. 

Problem 38. Use Theorem 11.9 to show that if P (D) is hypoelliptic 
then every parametrix F ∈ S(Rn) has sing supp(F ) = .{0}
Problem 39. Show that if P (D) is an ellipitic differential operator of 
order m, u ∈ L2(Rn) and P (D)u ∈ L2(Rn) then u ∈ Hm(Rn). 

Problem 40 (Taylor’s theorem). . Let u : Rn −→ R be a real­valued 
function which is k times continuously differentiable. Prove that there 
is a polynomial p and a continuous function v such that 

u(x) = p(x) + v(x) where lim 
|v(x)| 

= 0. 
x|x|↓0 | |k 

Problem 41. Let C(Bn) be the space of continuous functions on the 
(closed) unit ball, Bn = x ∈ Rn; x . Let C be { | | ≤ 1} 0(Bn) ⊂ C(Bn) 
the subspace of functions which vanish at each point of the boundary 
and let C(Sn−1) be the space of continuous functions on the unit sphere. 
Show that inclusion and restriction to the boundary gives a short exact 
sequence 

)C0(Bn) �→ C(Bn) −→ C(Sn−1

(meaning the first map is injective, the second is surjective and the 
image of the first is the null space of the second.) 

Problem 42 (Measures). A measure on the ball is a continuous linear 
functional µ : C(Bn) − R where continuity is with respect to the →
supremum norm, i.e. there must be a constant C such that 

µ(f) ≤ C sup f(x) ).| |
x∈Rn 

| | ∀ f ∈ C(Bn

Let M(Bn) be the linear space of such measures. The space M(Sn−1) 
of measures on the sphere is defined similarly. Describe an injective 
map 

M(Sn−1) − M(Bn).→
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Can you define another space so that this can be extended to a short 
exact sequence? 

Problem 43. Show that the Riemann integral defines a measure 

(17.3) C(Bn f(x)dx.) � f �−→ 
Bn 

Problem 44. and µ ∈ M(Bn) show that gµ ∈ M(Bn)If g ∈ C(Bn) 
where (gµ)(f) = µ(fg) for all f ∈ C(Bn). Describ e all the measures 
with the property that 

xjµ = 0 in M(Bn) for j = 1, . . . , n. 

Problem 45 (Hörmander, Theorem 3.1.4). Let I ⊂ R be an open, non­
empty interval. 

i) Show (you may use results from class) that there exists ψ ∈
(I) with R ψ(x)ds = 1.cC∞

ii) Show that any φ ∈ C∞(I) may be written in the form c 

˜φ = φ + cψ, c ∈ C, ˜ (I) with φ̃ = 0.cφ ∈ C∞
R 

iii) Show that if φ̃ ∈ C∞(I) and φ̃ = 0 then there exists µ ∈c R


C∞ dµ
(I) such that 
dx 

= φ̃ in I. c 

iv) Suppose u ∈ C−∞(I) satisfies du = 0, i.e.
dx 

dφ 
u(− ) = 0 ∀ φ ∈ C∞(I),

dx c 

show that u = c for some constant c. 
v) Suppose that u ∈ C−∞(I) satisfies du = c, for some constant c,

dx 
show that u = cx + d for some d ∈ C. 

Problem 46. [Hörmander Theorem 3.1.16] 

i) Use Taylor’s formula to show that there is a fixed ψ ∈ C∞(Rn)c 

such that any φ ∈ C∞(Rn) can be written in the form c 

n

φ = cψ + xjψj 
j=1 

where c ∈ C and the ψj ∈ C∞(Rn) depend on φ.c 

ii) Recall that δ0 is the distribution defined by 

δ0(φ) = φ(0) ∀ φ ∈ C∞(Rn);c 

explain why δ0 ∈ C−∞(Rn). 
iii) Show that if u ∈ C−∞(Rn) and u(xjφ) = 0 for all φ ∈ C∞(Rn)c 

and j = 1, . . . , n then u = cδ0 for some c ∈ C. 
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iv) Define the ‘Heaviside function’ 

∞ 

H(φ) = φ(x)dx ∀ φ ∈ Cc∞(R); 
0 

show that H ∈ C−∞(R). 
dv) Compute 
dx 
H ∈ C−∞(R). 

Problem 47. Using Problems 45 and 46, find all u ∈ C−∞(R) satisfying 
the differential equation 

du 
x = 0 in R. 
dx 

These three problems are all about homogeneous distributions on 
the line, extending various things using the fact that 

exp(z log x)	 x > 0 z x = + 0	 x ≤ 0 

is a continuous function on R if Re z > 0 and is differentiable if Re z > 1 
and then satisfies 

d z z−1 

dx
x+ = zx + . 

We used this to define 

1 1 1 dk z+k(17.4) x z	 = + z + k z + k − 1 
· · · 

z + 1 dxk 
x+ if z ∈ C \ −N. 

Problem 48. [Hadamard regularization] 

i) Show that (17.4) just means that for each φ ∈ C∞(R)c 

z	

dxk 
(x)x z+kx+(φ) = 

(−1)k ∞ dkφ 
dx, Re z > −k, z /

(z + k) · · · (z + 1)	
∈ −N. 

0 

ii) Use integration by parts to show that 
(17.5)	 ��� k∞	 � 

z x+(φ) = lim φ(x)x zdx − Cj(φ)�z+j , Re z > −k, z /
� 0	

∈ −N 
↓ �	 j=1 

for certain constants Cj(φ) which you should give explicitly. 
[This is called Hadamard regularization after Jacques Hadamard, 
feel free to look at his classic book [3].] 

iii) Assuming that −k + 1 ≥ Re z > −k, z = −k + 1, show that 
there can only be one set of the constants with j < k (for each 
choice of φ ∈ C∞(R)) such that the limit in (17.5) exists.c 
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iiv) Use ii), and maybe iii), to show that 

d z x	 = zx z−1 in C−∞(R) ∀ z / = {0, 1, . . . }. 
dx + + ∈ −N0


z z+1
v) Similarly show that xx = x+ for all z /+ ∈ −N. 
z ∈ −N. (Duh.)vi) Show that x+ = 0 in x < 0 for all z /

dProblem 49. [Null space of x
dx 
− z] 

i) Show that if u ∈ C−∞(R) then ũ(φ) = u(φ̃), where φ̃(x) = 
φ(− c (R), defines an element of C−∞(R). What is ũx) ∀ φ ∈ C∞
if u ∈ C0(R)? Compute δ�0. 

ddii) Show that
 ũ −=
 u.
dx dx 

z 
+ 

z+1 

�x d	 z∈ −N and show that for z /	
dx 
x− = zx z−1−	 − 

z 
−iii) Define x
 and
= 

z −
x	 .−
iv) Suppose that 

xx
 =
− 
u ∈ C−∞(R) satisfies the distributional equation 
0 (meaning of course, x du zu where z is a d(x
 − z)u = 

constant). Show that 
= 

dx dx 

z zand uu = c+x = c−x− −x>0 x>0 x<0 x<0 

z 
+− zfor some constants c±. Deduce that v satisfies
= u−
c+x c−x− 

d 
(17.6)	 (x

dx 
− z)v = 0 and supp(v) ⊂ {0}. 

v) Show that for each k ∈ N, (x d + k + 1) d
k 

δ0 = 0.
dx dxk 

vi) Using the fact that any v ∈ C−∞(R) with supp(v) ⊂ {0} is 
a finite sum of constant multiples of the dk 

δ0, show that, for 
dxk 

z /∈ −N, the only solution of (17.6) is v = 0.

vii) Conclude that for z /
∈ −N 

d 
(17.7)	 u ∈ C−∞(R); (x = 0 

dx 
− z)u

is a two­dimensional vector space. 

Problem 50. [Negative integral order] To do the same thing for negative 
integral order we need to work a little differently. Fix k ∈ N. 

i) We define weak convergence of distributions by saying un → u in 
(X), where un, u ∈ C−∞(X), X ⊂ Rn being open, if un(φ) →cC∞

u(φ)	 for each φ ∈ C∞(X). Show that un → u implies that c

∂un ∂u

∂xj	
→ 

∂xj 
for each j = 1, . . . , n and fun → fu if f ∈ C∞(X). 
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zii) Show that (z + k)x+ is weakly continuous as z → −k in the 
sense that for any sequence zn → −k, zn / +k)x zn 

+ → vk∈ −N, (zn
where 

dk+11 1 1 vk = 
−1 
· · · 
−k + 1 dxk+1 

x+, x+ = x+. 

iii) Compute vk, including the constant factor.

z
iv) Do the same thing for (z + k)x− as z → −k. 

z zv) Show that there is a linear combination (k + z)(x+ + c(k)x−) 
such that as z → −k the limit is zero. 

z zvi) If you get this far, show that in fact x+ + c(k)x also has a−
weak limit, uk, as z → −k. [This may be the hardest part.] 

dvii) Show that this limit distribution satisfies (x
dx 

+ k)uk = 0. 
viii) Conclude that (17.7) does in fact hold for z ∈ −N as well. 

[There are still some things to prove to get this.] 

Problem 51. Show that for any set G ⊂ Rn 

∞

v∗(G) = inf v(Ai) 
i=1 

where the infimum is taken over coverings of G by rectangular sets 
(products of intervals). 

Problem 52. Show that a σ­algebra is closed under countable intersec­
tions. 

Problem 53. Show that compact sets are Lebesgue measurable and 
have finite volume and also show the inner regularity of the Lebesgue 
measure on open sets, that is if E is open then 

(17.8) v(E) = sup{v(K); K ⊂ E, K compact}. 

Problem 54. Show that a set B ⊂ Rn is Lebesgue measurable if and 
only if 

v∗(E) = v∗(E ∩B) + v∗(E ∩B�) ∀ open E ⊂ Rn . 

[The definition is this for all E ⊂ Rn .] 

Problem 55. Show that a real­valued continuous function f : U − R→
on an open set, is Lebesgue measurable, in the sense that f−1(I) ⊂
U ⊂ Rn is measurable for each interval I. 

Problem 56. Hilbert space and the Riesz representation theorem. If 
you need help with this, it can be found in lots of places – for instance 
[6] has a nice treatment. 
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i) A pre­Hilbert space is a vector space V (over C) with a ‘positive 
definite sesquilinear inner product’ i.e. a function 

V × V � (v, w) �→ �v, w� ∈ C


satisfying

�v, w�• �w, v� = 

a1v1 + a2v2, w� = a1�v1, w�+ a2�v2, w�• �
• �v, v� ≥ 0 

0 v = 0.• �v, v� = ⇒
Prove Schwarz’ inequality, that 

11 

|�u, v�| ≤ �u�
2 v� 2 ∀ u, v ∈ V. 

Hint: Reduce to the case �v, v� = 1 and then expand 

u − �u, v�v, u − �u, v�� v� ≥ 0. 

ii) Show that �v� = �v, v�1/2 is a norm and that it satisfies the 
parallelogram law: 

2 2 2(17.9) v1 + v2� + �v1 − v2� = 2�v1�2 + 2�v2� ∀ v1, v2 ∈ V. 

iii) Conversely, suppose that V is a linear space over C with a norm 
which satisfies (17.9). Show that 

24�v, w� = v + w�2 v − w� + i�v + iw�2 v − iw�2� − � − i�

defines a pre­Hilbert inner product which gives the original 
norm. 

iv) Let V be a Hilbert space, so as in (i) but complete as well. 
Let C ⊂ V be a closed non­empty convex subset, meaning 
v, w ∈ C ⇒ (v + w)/2 ∈ C. Show that there exists a unique 
v ∈ C minimizing the norm, i.e. such that 

v� = inf .w��
w∈C 
�

Hint: Use the parallelogram law to show that a norm mini­
mizing sequence is Cauchy. 

v) Let u : H C be a continuous linear functional on a Hilbert →
space, so Show that N = {ϕ ∈|u(ϕ)| ≤ C�ϕ� ∀ ϕ ∈ H. 
H;u(ϕ) = 0} is closed and that if v0 ∈ H has u(v0) = 0 then 
each v ∈ H can be written uniquely in the form 

v = cv0 + w, c ∈ C, w ∈ N. 

vi) With u as in v), not the zero functional, show that there exists 
a unique f ∈ H with u(f) = 1 and �w, f� = 0 for all w ∈ N . 

Hint: Apply iv) to C = {g ∈ V ;u(g) = 1}. 
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vii) Prove the Riesz Representation theorem, that every continuous 
linear functional on a Hilbert space is of the form 

uf : H � ϕ �→ �ϕ, f� for a unique f ∈ H. 

Problem 57. Density of C∞(Rn) in Lp(Rn).c 

i) Recall in a few words why simple integrable functions are dense 
in L1(Rn) with respect to the norm �f�L1 = f(x)|dx. �N 

Rn |
ii) Show that simple functions j=1 cjχ(Uj) where the Uj are open 

and bounded are also dense in L1(Rn). 
iii) Show that if U is open and bounded then F (y) = v(U ∩ Uy), 

where Uy = z ∈ Rn; z = y+y�, y� ∈ U} is continuous in y ∈ Rn{
and that 

v(U ∩ Uy�) + v(U� ∩ Uy)→ 0 as y → 0. 

iv) If U is open and bounded and ϕ ∈ C∞(Rn) show that c 

f(x) = ϕ(x − y)dy ∈ Cc∞(Rn). 
U 

v) Show that if U is open and bounded then 

sup χU(x)− χU(x − y) dx 0 as δ 0.| | → ↓
|y|≤δ � 

vi) If U is open and bounded and ϕ ∈ C∞(Rn), ϕ ≥ 0, ϕ = 1c 

then

fδ → χU in L1(Rn) as δ 0
↓

where 

fδ(x) = δ−n ϕ
y

χU(x − y)dy. 
δ 

yHint: Write χU(x) = δ−n ϕ 
δ 
χU(x) and use v).


vii) Conclude that C∞(Rn) is dense in L1(Rn).
c 

viii) Show that C∞(Rn) is dense in Lp(Rn) for any 1 ≤ p < ∞.c 

Problem 58. Schwartz representation theorem. Here we (well you) come 
to grips with the general structure of a tempered distribution. 

i) Recall briefly the proof of the Sobolev embedding theorem and 
the corresponding estimate 

n 
sup φ(x)| ≤ C�φ�Hm , < m ∈ R. 
x∈Rn 

|
2 

ii) For m = n + 1 write down a(n equivalent) norm on the right in 
a form that does not involve the Fourier transform. 
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iii) Show that for any α ∈ N0 

Dα (1 + |x|2)Nφ ≤ Cα,N (1 + |x|2)N Dβφ .| | | |
β≤α 

iv) Deduce the general estimates 

2sup (1 + |x|2)N Dαφ(x) ≤ CN�(1 + x )Nφ�HN+n+1 .| | | |
|α|≤N 
x∈Rn 

v) Conclude that for each tempered distribution u ∈ S �(Rn) there 
is an integer N and a constant C such that 

u(φ) ≤ C�(1 + x 2)Nφ�H2N ).| | | | ∀ φ ∈ S(Rn


vi) Show that v = (1 + |x|2)−Nu ∈ S �(Rn) satisfies


v(φ) ≤ C�(1 + D 2)Nφ� ).| | | | L2 ∀ φ ∈ S(Rn

vi) Recall (from class or just show it) that if v is a tempered dis­
tribution then there is a unique w ∈ S �(Rn) such that (1 + 
|D 2)Nw = v. |

vii) Use the Riesz Representation Theorem to conclude that for each 
tempered distribution u there exists N and w ∈ L2(Rn) such 
that 

(17.10) u = (1 + |D|2)N(1 + x 2)N w. | |

viii) Use the Fourier transform on S �(Rn) (and the fact that it is an 
isomorphism on L2(Rn)) to show that any tempered distribu­
tion can be written in the form 

u = (1 + |x|2)N(1 + |D 2)N w for some N and some w ∈ L2(Rn).|

ix) Show that any tempered distribution can be written in the form 

u = (1+|x|2)N(1+|D 2)N+n+1 ˜ w ∈ H2(n+1)(Rnw for some N and some ˜ ).|

x) Conclude that any tempered distribution can be written in the 
form 

2u = (1 + |x|2)N(1 + |D )MU for some N,M |
and a bounded continuous function U 

Problem 59. Distributions of compact support. 

i) Recall the definition of the support of a distribution, defined in 
terms of its complement 

Rn\supp(u) = p ∈ Rn;∃ U ⊂ Rn , open, with p ∈ U such that u = 
U 

0 



� 

LECTURE NOTES FOR 18.155, FALL 2004 117 

ii) Show that if u ∈ C−∞(Rn) and φ ∈ C∞(Rn) satisfy c 

supp(u) ∩ supp(φ) = ∅ 

then u(φ) = 0. 
iii) Consider the space C∞(Rn) of all smooth functions on Rn , with­

out restriction on supports. Show that for each N 

= sup�f�(N) |Dαf(x)|
|α|≤N, |x|≤N 

is a seminorn on C∞(Rn) (meaning it satisfies �f� ≥ 0, �cf� = 
c|�f� for c ∈ C and the triangle inequality but that �f� = 0|
does not necessarily imply that f = 0.) 

iv) Show that C∞ is dense in the sense that for c (Rn) ⊂ C∞(Rn) 
each f ∈ C∞(Rn) there is a sequence fn in C∞(Rn) such that c 

0 for each N. �f − fn�(N) →
v) Let E �(Rn) temporarily (or permanantly if you prefer) denote 

the dual space of C∞(Rn) (which is also written E(Rn)), that 
is, �(Rn) is a linear map v : C∞(Rn) − C which is v ∈ E →
continuous in the sense that for some N 

(17.11) v(f) ).| | ≤ C�f�(N) ∀ f ∈ C∞(Rn

Show that such a v ‘is’ a distribution and that the map E �(Rn) −
C−∞(Rn) is injective. 

→ 

vi) Show that if v ∈ E �(Rn) satisfies (17.11) and f ∈ C∞(Rn) has 
f = 0 in |x| < N + � for some � > 0 then v(f) = 0. 

vii) Conclude that each element of E �(Rn) has compact support 
when considered as an element of C−∞(Rn). 

viii) Show the converse, that each element of C−∞(Rn) with compact 
support is an element of E �(Rn ) and hence conclude ) ⊂ C−∞(Rn

that E �(Rn) ‘is’ the space of distributions of compact support. 

I will denote the space of distributions of compact support by C−∞(R).c 

Problem 60. Hypoellipticity of the heat operator H = iDt + Δ = 
n

iDt + D2 on Rn+1 .xj

j=1


(1) Using τ to denote the ‘dual variable’ to t and ξ ∈ Rn to denote 
the dual variables to x ∈ Rn observe that H = p(Dt, Dx) where 
p = iτ + ξ 2 . 

(2) Show that | 1
| |
p(τ, ξ)| > 

2 
( τ + ξ 2) .| | | |
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(3) Use an inductive argument to show that, in (τ, ξ) = 0 where it 
makes sense, 

α||
1 � qk,α,j(ξ)

(17.12) DkDα = τ ξ p(τ, ξ) p(τ, ξ)k+j+1 
j=1 

where qk,α,j(ξ) is a polynomial of degree (at most) 2j − α .| |
(4) Conclude that if φ ∈ C∞(Rn+1) is identically equal to 1 in a c 

neighbourhood of 0 then the function 

g(τ, ξ) =
1 − φ(τ, ξ) 

iτ + |ξ|2 

is the Fourier transform of a distribution F ∈ S �(Rn) with 
sing supp(F ) ⊂ {0}. [Remember that sing supp(F ) is the com­
plement of the largest open subset of Rn the restriction of F to 
which is smooth]. 

(5) Show that F is a parametrix for the heat operator. 
(6) Deduce that iDt + Δ is hypoelliptic – that is, if U ⊂ Rn is an 

open set and u ∈ C−∞(U) satisfies (iDt + Δ)u ∈ C∞(U) then 
u ∈ C∞(U). 

(7) Show that iDt −Δ is also hypoelliptic. 

Problem 61. Wavefront set computations and more – all pretty easy, 
especially if you use results from class. 

i) Compute WF(δ) where δ ∈ S �(Rn) is the Dirac delta function 
at the origin. 

ii) Compute WF(H(x)) where H(x) ∈ S �(R) is the Heaviside func­
tion 

1 x > 0 
H(x) = . 

0 x ≤ 0 

Hint: Dx is elliptic in one dimension, hit H with it. 
iii) Compute WF(E), E = iH(x1)δ(x

�) which is the Heaviside in 
the first variable on Rn, n > 1, and delta in the others. 

iv) Show that D E = δ, so E is a fundamental solution of Dx1 .x1

v) If f ∈ C−∞(Rn) show that u = E � f solves Dx1u = f. c 

vi) What does our estimate on WF(E � f) tell us about WF(u) in 
terms of WF(f)? 

Problem 62. The wave equation in two variables (or one spatial vari­
able). 
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i) Recall that the Riemann function 

1 if t > x and t > −x
4E(t, x) = 
−
0 otherwise 

is a fundamental solution of Dt 
2 −D2 

x (check my constant). 
ii) Find the singular support of E. 
iii) Write the Fourier transform (dual) variables as τ, ξ and show 

that 

WF(E) ⊂ {0} × S1 ∪ {(t, x, τ, ξ); x = t > 0 and ξ + τ = 0} 
∪ {(t, x, τ, ξ); −x = t > 0 and ξ = τ} . 

iv) Show that if f ∈ C−∞(R2) then u = E�f satisfies (Dt 
2−D2 

x)u = c 

f.

v) With u defined as in iv) show that


supp(u) ⊂ {(t, x); ∃ 
(t�, x�) ∈ supp(f) with t� + x� ≤ t+ x and t� − x� .≤ t− x}

vi) Sketch an illustrative example of v).

vii) Show that, still with u given by iv),


sing supp(u) ⊂ {(t, x); ∃ (t�, x�) ∈ sing supp(f) with 

t ≥ t� and t+ x = t� + x� or t− x = t� − x� .}
viii) Bound WF(u) in terms of WF(f). 

Problem 63. A little uniqueness theorems. Suppose u ∈ C−∞(Rn) recall c 

that the Fourier transform û ∈ C∞(Rn). Now, suppose u ∈ C−∞(Rn)c 

satisfies P (D)u = 0 for some non­trivial polynomial P, show that u = 0. 

Problem 64. Work out the elementary behavior of the heat equation. 

i) Show that the function on R × Rn , for n ≥ 1, 
n xt− 
2 exp − |

4
|
t 

2 

t > 0 
F (t, x) = 

0 t ≤ 0 

is measurable, bounded on the any set {|(t, x) ≥ R} and is |
integrable on {|(t, x) ≤ R} for any R > 0.|

ii) Conclude that F defines a tempered distibution on Rn+1 . 
iii) Show that F is C∞ outside the origin. 
iv) Show that F satisfies the heat equation 

n

(∂t − ∂2 )F (t, x) = 0 in (t, x) = 0.xj

j=1 
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v) Show that F satisfies 

2 (Rn+1(17.13) F (s t, sx) = s−nF (t, x) in S � ) 

where the left hand side is defined by duality “F (s2t, sx) = Fs ” 
where 

x 
Fs(φ) = s−n−2F (φ1/s), φ1/s(t, x) = φ( 

t 
2 
, ). 

s s 

vi) Conclude that 

n

(∂t − ∂2 )F (t, x) = G(t, x)xj

j=1 

where G(t, x) satisfies 

2 (Rn+1(17.14) G(s t, sx) = s−n−2G(t, x) in S � ) 

in the same sense as above and has support at most {0}. 
vii) Hence deduce that 

n

(17.15) (∂t − ∂2 )F (t, x) = cδ(t)δ(x)xj

j=1 

for some real constant c. 
Hint: Check which distributions with support at (0, 0) satisfy 

(17.14). 
(Rn+1)viii) If ψ ∈ C∞ show that u = F � ψ satisfiesc 

(17.16) u ∈ C∞(Rn+1) and 

sup (1 + |x|)N Dα u(t, x) > 0, α ∈ Nn+1, N. 
x∈Rn, t∈[−S,S] 

| | < ∞ ∀ S 

ix) Supposing that u satisfies (17.16) and is a real­valued solution 
of 

n

(∂t − ∂2 )u(t, x) = 0xj

j=1 

in Rn+1 , show that 

v(t) = u 2(t, x) 
Rn 

is a non­increasing function of t. 
Hint: Multiply the equation by u and integrate over a slab 

[t1, t2]× Rn . 
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x) Show that c in (17.15) is non­zero by arriving at a contradiction 
from the assumption that it is zero. Namely, show that if c = 0 
then u in viii) satisfies the conditions of ix) and also vanishes 
in t < T for some T (depending on ψ). Conclude that u = 0 
for all ψ. Using properties of convolution show that this in turn 
implies that F = 0 which is a contradiction. 

1xi) So, finally, we know that E = 
c 
F is a fundamental solution of 

the heat operator which vanishes in t < 0. Explain why this 
allows us to show that for any ψ ∈ C∞(R × Rn) there is a c 

solution of 
n

(17.17) (∂t − ∂2 )u = ψ, u = 0 in t < T for some T.xj


j=1


What is the largest value of T for which this holds? 
xii) Can you give a heuristic, or indeed a rigorous, explanation of 

why 
2x

c = exp(−| | )dx? 
Rn 4 

xiii) Explain why the argument we used for the wave equation to 
show that there is only one solution, u ∈ C∞(Rn+1), of (17.17) 
does not apply here. (Indeed such uniqueness does not hold 
without some growth assumption on u.) 

Problem 65. (Poisson summation formula) As in class, let L ⊂ Rn be 
an integral lattice of the form 

n

L = v = kjvj, kj ∈ Z 
j=1 

where the vj form a basis of Rn and using the dual basis wj (so wj vi = ·
δij is 0 or 1 as i = j or i = j) set 

n

L◦ = w = 2π kjwj, kj ∈ Z . 
j=1 

Recall that we defined 

(17.18) C∞(TL) = ); u(z + v) = u(z) ∀ z ∈ Rn , v ∈ L}.{u ∈ C∞(Rn


i) Show that summation over shifts by lattice points:


(17.19) AL : S(Rn ALf(z) = f(z − v) � f �−→ ) ∈ C∞(TL). 
v∈L 

defines a map into smooth periodic functions. 
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ii) Show that there exists f ∈ C∞(Rn) such that ALf ≡ 1 is the c 

costant function on Rn . 
iii) Show that the map (17.19) is surjective. Hint: Well obviously 

enough use the f in part ii) and show that if u is periodic then 
AL(uf ) = u. 

iv) Show that the infinite sum 

(17.20) F = δ(· − v) ∈ S �(Rn) 
v∈L 

does indeed define a tempered distribution and that F is L­
periodic and satisfies exp(iw · z)F (z) = F (z) for each w ∈ L◦ 

with equality in S �(Rn). 

v) Deduce that F̂ , the Fourier transform of F, is L◦ periodic, con­
clude that it is of the form 

(17.21) F̂ (ξ) = c δ(ξ − w) 
w∈L◦ 

vi) Compute the constant c. 
vii) Show that AL(f) = F � f. 
viii) Using this, or otherwise, show that AL(f) = 0 in C∞(TL) if and 

only if f̂ = 0 on L◦. 

Problem 66. For a measurable set Ω ⊂ Rn , with non­zero measure, 
set H = L2(Ω) and let B = B(H) be the algebra of bounded linear 
operators on the Hilbert space H with the norm on B being 

(17.22) �B�B = sup{�Bf�H ; f ∈ H, �f�H = 1}. 

i) Show that B is complete with respect to this norm. Hint (prob­
ably not necessary!) For a Cauchy sequence {Bn} observe that 
Bnf is Cauchy for each f ∈ H. 

ii) If V ⊂ H is a finite­dimensional subspace and W ⊂ H is a 
closed subspace with a finite­dimensional complement (that is 
W +U = H for some finite­dimensional subspace U) show that 
there is a closed subspace Y ⊂ W with finite­dimensional com­
plement (in H) such that V ⊥ Y, that is �v, y� = 0 for all v ∈ V 
and y ∈ Y. 

iii) If A ∈ B has finite rank (meaning AH is a finite­dimensional 
vector space) show that there is a finite­dimensional space V ⊂
H such that AV ⊂ V and AV ⊥ = {0} where 

V ⊥ = {f ∈ H; �f, v� = 0 ∀ v ∈ V }. 
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Hint: Set R = AH, a finite dimensional subspace by hypothesis. 
Let N be the null space of A, show that N⊥ is finite dimensional. 
Try V = R + N⊥. 

iv) If A ∈ B has finite rank, show that (Id−zA)−1 exists for all but 
a finite set of λ ∈ C (just quote some matrix theory). What 
might it mean to say in this case that (Id −zA)−1 is meromor­
phic in z? (No marks for this second part). 

v) Recall that K ⊂ B is the algebra of compact operators, defined 
as the closure of the space of finite rank operators. Show that 
K is an ideal in B. 

vi) If A ∈ K show that 

Id +A = (Id +B)(Id +A�) 

where B ∈ K, (Id +B)−1 exists and A� has finite rank. Hint: 
Use the invertibility of Id +B when �B�B < 1 proved in class. 

vii) Conclude that if A ∈ K then 

{f ∈ H; (Id +A)f = 0} and (Id +A)H 
⊥ 

are finite dimensional. 

Problem 67. [Separable Hilbert spaces] 

i) (Gramm­Schmidt Lemma). Let {vi}i∈N be a sequence in a 
Hilbert space H. Let Vj ⊂ H be the span of the first j ele­
ments and set Nj = dim Vj. Show that there is an orthonormal 
sequence e1, . . . , ej (finite if Nj is bounded above) such that Vj 
is the span of the first Nj elements. Hint: Proceed by induction 
over N such that the result is true for all j with Nj < N. So, 
consider what happens for a value of j with Nj = Nj−1 + 1 and 
add element eNj 

∈ Vj which is orthogonal to all the previous 
ek’s. 

ii) A Hilbert space is separable if it has a countable dense subset 
(sometimes people say Hilbert space when they mean separable 
Hilbert space). Show that every separable Hilbert space has a 
complete orthonormal sequence, that is a sequence {ej} such 
that �u, ej� = 0 for all j implies u = 0. 

iii) Let {ej} an orthonormal sequence in a Hilbert space, show that 
for any aj ∈ C, 

N N

2 2 = .ajej�� |aj|
j=1 j=1 
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iv) (Bessel’s inequality) Show that if ej is an orthormal sequence 
in a Hilbert space and u ∈ H then 

N

2 2�u, ej�ej�� ≤ �u�
j=1 

and conclude (assuming the sequence of ej’s to be infinite) that 
the series 

∞

�u, ej�ej 
j=1 

converges in H. 
v) Show that if ej is a complete orthonormal basis in a separable 

Hilbert space then, for each u ∈ H, 
∞

u = �u, ej�ej. 
j=1 

Problem 68. [Compactness] Let’s agree that a compact set in a metric 
space is one for which every open cover has a finite subcover. You may 
use the compactness of closed bounded sets in a finite dimensional 
vector space. 

i) Show that a compact subset of a Hilbert space is closed and 
bounded. 

ii) If ej is a complete orthonormal subspace of a separable Hilbert 
space and K is compact show that given � > 0 there exists N 
such that 

(17.23) |�u, ej�|2 ≤ � ∀ u ∈ K. 
j≥N 

iii) Conversely show that any closed bounded set in a separable 
Hilbert space for which (17.23) holds for some orthonormal basis 
is indeed compact. 

iv) Show directly that any sequence in a compact set in a Hilbert 
space has a convergent subsequence. 

v) Show that a subspace of H which has a precompact unit ball 
must be finite dimensional. 

vi) Use the existence of a complete orthonormal basis to show that 
any bounded sequence {uj}, �uj� ≤ C, has a weakly conver­
gent subsequence, meaning that �v, uj� converges in C along 
the subsequence for each v ∈ H. Show that the subsequnce can 
be chosen so that �ek, uj� converges for each k, where ek is the 
complete orthonormal sequence. 
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Problem 69. [Spectral theorem, compact case] Recall that a bounded 
operator A on a Hilbert space H is compact if A{�u� ≤ 1} is pre­
compact (has compact closure). Throughout this problem A will be a 
compact operator on a separable Hilbert space, H. 

i) Show that if 0 = λ ∈ C then 

Eλ = {u ∈ H;Au = λu}. 
is finite dimensional. 

ii) If A is self­adjoint show that all eigenvalues (meaning Eλ = {0}) 
are real and that different eigenspaces are orthogonal. 

iii) Show that αA = sup{|�Au, u�|2}; �u� = 1} is attained. Hint: 
Choose a sequence such that |�Auj, uj�|2 tends to the supre­
mum, pass to a weakly convergent sequence as discussed above 
and then using the compactness to a furhter subsequence such 
that Auj converges. 

iv) If v is such a maximum point and f ⊥ v show that �Av, f� + 
�Af, v� = 0. 

v) If A is also self­adjoint and u is a maximum point as in iii) 
deduce that Au = λu for some λ ∈ R and that λ = ±α. 

vi) Still assuming A to be self­adjoint, deduce that there is a finite­
dimensional subspace M ⊂ H, the sum of eigenspaces with 
eigenvalues ±α, containing all the maximum points. 

vii) Continuing vi) show that A restricts to a self­adjoint bounded 
operator on the Hilbert space M⊥ and that the supremum in 
iii) for this new operator is smaller. 

viii) Deduce that for any compact self­adjoint operator on a sep­
arable Hilbert space there is a complete orthonormal basis of 
eigenvectors. Hint: Be careful about the null space – it could 
be big. 

Problem 70. Show that a (complex­valued) square­integrable function 
u ∈ L2(Rn) is continuous in the mean, in the sense that 

(17.24)	 lim sup u(x + y)− u(x) 2dx = 0. 
�↓0 |y|<� 

| |

Hint: Show that it is enough to prove this for non­negative functions 
and then that it suffices to prove it for non­negative simple functions 
and finally that it is enough to check it for the characteristic function 
of an open set of finite measure. Then use Problem 57 to show that it 
is true in this case. 

Problem 71. [Ascoli­Arzela] Recall the proof of the theorem of Ascoli 
0and Arzela, that a subset of C0(Rn) is precompact (with respect to the 
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supremum norm) if and only if it is equicontinuous and equi­small at 
infinity, i.e. given � > 0 there exists δ > 0 such that for all elements 
u ∈ B 
(17.25) 
y < δ = ⇒ sup u(x+ y) = u(x) < � and x > 1/δ = u(x)| < �.| | 

x∈Rn 

|	 | | | ⇒ |

Problem 72. [Compactness of sets in L2(Rn).] Show that a subset B ⊂
L2(Rn) is precompact in L2(Rn) if and only if it satisfies the following 
two conditions: 

i) (Equi­continuity in the mean) For each � > 0 there exists δ > 0 
such that 

(17.26) u(x+ y)− u(x) 2dx < � ∀ y < δ, u ∈ B. 
Rn 

|	 | | | 

ii) (Equi­smallness at infinity) For each � > 0 there exists R such 
that 

(17.27)	 u 2dx < � ∀ u ∈ B.| |
x >R|| |

Hint: Problem 70 shows that (17.26) holds for each u ∈ L2(Rn); check 
that (17.27) also holds for each function. Then use a covering argument 
to prove that both these conditions must hold for a compact subset of 
L2(R) and hence for a precompact set. One method to prove the con­
verse is to show that if (17.26) and (17.27) hold then B is bounded 
and to use this to extract a weakly convergent sequence from any given 
sequence in B. Next show that (17.26) is equivalent to (17.27) for the 
set F (B), the image of B under the Fourier transform. Show, possi­
bly using Problem 71, that if χR is cut­off to a ball of radius R then 

uχRG(χRˆn) converges strongly if un converges weakly. Deduce from 
this that the weakly convergent subsequence in fact converges strongly 

¯so B is sequently compact, and hence is compact. 

Problem 73. Consider the space Cc(Rn) of all continuous functions on 
Rn with compact support. Thus each element vanishes in |x| > R for 
some R, depending on the function. We want to give this a toplogy in 
terms of which is complete. We will use the inductive limit topology. 
Thus the whole space can be written as a countable union 
(17.28)	 

 
Cc(Rn) = {u : Rn;u is continuous and u(x) = 0 for x > R}.| |

n 

Each of the space on the right is a Banach space for the supremum 
norm. 
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(1) Show that the supreumum norm is not complete on the whole 
of this space. 

(2) Define a subset U ⊂ C c(Rn) to be open if its intersection with 
each of the subspaces on the right in (17.28) is open w.r.t. the 
supremum norm. 

(3) Show that this definition does yield a topology. 
(4) Show that any sequence { fn} which is ‘Cauchy’ in the sense that 

for any open neighbourhood U of 0 there exists N such that fn−
fm ∈ U for all n,m ≥ N, is convergent (in the corresponding 
sense that there exists f in the space such that f − fn U∈
eventually). 

(5) If you are determined, discuss the corresponding issue for nets. 

Problem 74. Show that the continuity of a linear functional u : C ∞c (Rn) −→ 
C with respect to the inductive limit topology defined in (6.16) means 
precisely that for each n ∈ N there exists k = k(n) and C = Cn such 
that 

(17.29) C ∞(B(n)).| u(ϕ)| ≤ C� ϕ� Ck , ∀ ϕ ∈ ˙

The point of course is that the ‘order’ k and the constnat C can both 
increase as n, measuring the size of the support, increases. 

Problem 75. [Restriction from Sobolev spaces] The Sobolev embedding 
theorem shows that a function in Hm(Rn), for m > n/2 is continuous 
– and hence can be restricted to a subspace of Rn . In fact this works 
more generally. Show that there is a well defined restriction map 

Hm(17.30) (Rn) −→ Hm− 1 
2 (Rn 1 

) if m > 
2 

with the following properties: 

(1) On S (Rn) it is given by u �−→ u(0, x�), x� ∈ Rn−1 . 
(2) It is continuous and linear. 

Hint: Use the usual method of finding a weak version of the map on 
smooth Schwartz functions; namely show that in terms of the Fourier 
transforms on Rn and Rn−1 

� ˆ(17.31) u(0, · )(ξ�) = (2π)−1 u(ξ1, ξ
�)dξ1, ∀ ξ� ∈ Rn−1 . 

R 

Use Cauchy’s inequality to show that this is continuous as a map on 
Sobolev spaces as indicated and then the density of S (Rn) in Hm(Rn) 
to conclude that the map is well­defined and unique. 

Problem 76. [Restriction by WF] From class we know that the product 
of two distributions, one with compact support, is defined provided 
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they have no ‘opposite’ directions in their wavefront set: 

(17.32) (x, ω) ∈WF(u) = ⇒ (x, −ω) /∈WF(v) then uv ∈ C−∞(Rn).c 

Show that this product has the property that f(uv) = (fu)v = u(fv) 
Use this to define a restriction map to x1 = 0 for if f ∈ C∞(Rn). 

distributions of compact support satisfying ((0, x�), (ω1, 0)) /∈ WF(u) 
as the product 

(17.33) u0 = uδ(x1). 

[Show that u0(f), f ∈ C∞(Rn) only depends on f(0, ·) ∈ C∞(Rn−1). 

Problem 77. [Stone’s theorem] For a bounded self­adjoint operator A 
show that the spectral measure can be obtained from the resolvent in 
the sense that for φ, ψ ∈ H 

1 
(17.34) lim

2πi
�[(A − t − i�)−1 − (A + t + i�)−1]φ, ψ� −→ µφ,ψ

� 0↓

in the sense of distributions – or measures if you are prepared to work 
harder! 

Problem 78. ) and ψ� = ψR + µ is, as in the proof of If u ∈ S(Rn

Lemma 12.5, such that 

supp(ψ�) ∩ Css(u) = ∅ 

show that 

S(Rn φψ�u ∈ S(Rn)) � φ �−→

is continuous and hence (or otherwise) show that the functional u1u2 

defined by (12.20) is an element of S �(Rn). 

Problem 79. Under the conditions of Lemma 12.10 show that 
(17.35)


Css(u∗v)∩Sn−1 sx + ty
, x = y = 1, x ∈ Css(u), y ∈ Css(v), 0 ≤ s, t ≤ 1}.
⊂ {

|sx + ty
| | | |

| 

Notice that this make sense exactly because sx + ty = 0 implies that 
t/s = 1 but x + y = 0 under these conditions by the assumption of 
Lemma 12.10. 

Problem 80. Show that the pairing u(v) of two distributions u, v ∈
bS �(Rn) may be defined under the hypothesis (12.50). 
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Problem 81. Show that under the hypothesis (12.51) 

(17.36) 

WFsc(u∗v) ⊂ {(x+y, p); (x, p) ∈WFsc(u)∩(Rn ×Sn−1), (y, p) ∈WFsc(v)∩(Rn ×Sn−1)} 
s�θ� + s��θ�� ∪ {(θ, q) ∈ Sn−1 × Bn; θ = 
|s�θ� + s��θ��| 

, 0 ≤ s�, s�� ≤ 1, 

(θ�, q) ∈WFsc(u) ∩ (Sn−1 × Bn), (θ��, q) ∈WFsc (v) ∩ (Sn−1 × Bn)}. 

Problem 82. Formulate and prove a bound similar to (17.36) for WFsc(uv) 
when u, v ∈ S �(Rn) satisfy (12.50). 

Problem 83. Show that for convolution u ∗ v defined under condition 
(12.51) it is still true that 

(17.37) P (D)(u ∗ v) = (P (D)u) ∗ v = u ∗ (P (D)v). 

Problem 84. Using Problem 80 (or otherwise) show that integration is 
defined as a functional 

(17.38) {u ∈ S �(Rn); (Sn−1 × {0}) ∩WFsc(u) = � � ∅} −→ C. 
If u satisfies this condition, show that P (D)u = c u where c is the 
constant term in P (D), i.e. P (D)1 = c. 

Problem 85. Compute WFsc(E) where E = C/ x − y is the standard | |
fundamental solution for the Laplacian on R3 . Using Problem 83 give 
a condition on WFsc(f) under which u = E ∗ f is defined and satisfies 
Δu = f. Show that under this condition f is defined using Prob­
lem 84. What can you say about WFsc(u)? Why is it not the case that 
Δu = 0, even though this is true if u has compact support? 
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18. Solutions to (some of) the problems 

Solution	 18.1 (To Problem 10). (by Matjaž Konvalinka). 
Since the topology on N, inherited from R, is discrete, a set is com­

pact if and only if it is finite. If a sequence {xn} (i.e. a function N C)→
is in C0(N) if and only if for any � > 0 there exists a compact (hence 
finite) set F� so that |xn| < � for any n not in F�. We can assume that 
F� = {1, . . . , n�}, which gives us the condition that {xn} is in C0(N) 
if and only if it converges to 0. We denote this space by c0, and the 
supremum norm by � · �0. A sequence {xn} will be abbreviated to x. 

Let l1 denote the space of (real or complex) sequences x with a finite 
1­norm 

∞

= xn|.�x�1 |
n=1 

We can define pointwise summation and multiplication with scalars, 
and (l1 , � · �1) is a normed (in fact Banach) space. Because the func­
tional 

∞

xnyny �→ 
n=1 

∞
=1n xnyn| ≤ ∞

=1n |xn||yn|is linear and bounded (

�x�0, the mapping 

≤ �x�0 �y�1) by | 

Φ: l1 �−→ c∗ 
0 

defined by	 � �

∞

∞
=1n

xnynx �→ y �→ 
n=1 

is a (linear) well­defined mapping with norm at most 1. In fact, Φ is 
an isometry because if |xj| = �x�0 then Φ(x)(ej)| = 1 where ej is|
the j­th unit vector. We claim that Φ is also surjective (and hence an 
isometric isomorphism). If ϕ is a functional on c0 let us denote ϕ(ej) 

∞
=1nby xj. Then Φ(x)(y) ϕ(en)yn ϕ(ynen) = ϕ(y) (the = = 

∞ y en n=1nlast equality holds because converges to y in c0 and ϕ is 
continuous with respect to the topology in c0), so Φ(x) = ϕ. 

Solution 18.2 (To Problem 29). (Matjaž Konvalinka) Since 

∞ 

(x) dx
=DxH(ϕ) = H(−Dxϕ) = i H(x)ϕ
−∞

∞ 

(x) dx = i(0 − ϕ(0)) = −iδ(ϕ),
i ϕ
0 

we get DxH = Cδ for C = −i. 
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Solution 18.3 (To Problem 40). (Matjaž Konvalinka) Let us prove this 
in the case where n = 1. Define (for b = 0) 

(k−1)(x);U(x) = u(b)− u(x)− (b− x)u�(x)− . . . − 
(b− x)k−1 

u
(k − 1)! 

then 

U �(x) =
(b− x)k−1 

u(k)(x).−
(k − 1)! 

For the continuously differentiable function V (x) = U(x)−(1−x/b)kU(0) 
we have V (0) = V (b) = 0, so by Rolle’s theorem there exists ζ between 
0 and b with 

V �(ζ) = U �(ζ) + 
k(b− ζ)k−1 

U(0) = 0 
bk 

Then 
bk 

U(0) = −
k(b− ζ)k−1 

U �(ζ), 

u(k)(ζ) 
u(b) = u(0) + u�(0)b+ . . . + 

u(k−1)(0) 
bk−1 + bk . 

(k − 1)! k! 

The required decomposition is u(x) = p(x) + v(x) for 

u(k−1)(0) u(k)(0) 2 k p(x) = u(0) + u�(0)x + 
u��(0) 

x + . . . + x k−1 + x ,
2 (k − 1)! k! 

k v(x) = u(x)− p(x) = 
u(k)(ζ)− u(k)(0) 

x 
k! 

for ζ between 0 and x, and since u(k) is continuous, (u(x) − p(x))/xk 
tends to 0 as x tends to 0. 

The proof for general n is not much more difficult. Define the func­
tion wx : I R by wx(t) = u(tx). Then wx is k­times continuously →
differentiable, 

n� ∂u 
w�
x(t) = (tx)xi,

∂xii=1 

n� ∂2u 
x(t) = (tx)xixj,w��

∂xi∂xji,j=1 

w(l)(t) = 
� l! 

1 ∂x

∂
l2 

lu 

∂x i
li 
(tx)x l1 

1x2 
l2 · · ·x li x l1!l2! li! ∂x l1 

i 

l1+l2+...+li=l 
· · ·

2 · · ·
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so by above u(x) = wx(1) is the sum of some polynomial p (od degree 
k), and we have 

(k) (k)
u(x)− p(x) vx(1) wx (ζx)− wx (0) 

,= = 
x x k!|x|k| |k | |k 

so it is bounded by a positive combination of terms of the form 

∂lu ∂lu


1 ∂x 
l2 ∂x i

li 
(ζxx)− 

∂x l1
∂x l1 1 ∂x 
l2 ∂x i

li 
(0) 

2 · · · 2 · · ·
with l1 + . . . + li = k and 0 < ζx < 1. This tends to zero as x →
because the derivative is continuous. 

Solution 18.4 (Solution to Problem 41). (Matjž Konvalinka) Obviously 
the map C0(Bn)→ C(Bn) is injective (since it is just the inclusion map), 
and f ∈ C(Bn) is in C0(Bn) if and only if it is zero on ∂Bn , ie. if and 
only if f |Sn−1 = 0. It remains to prove that any map g on Sn−1 is the 
restriction of a continuous function on Bn . This is clear since 

x g(x/|x|) x = 0 
f(x) = 

| | �
0 x = 0 

is well­defined, coincides with f on Sn−1, and is continuous: if M is 
the maximum of |g| on Sn−1, and � > 0 is given, then f(x) < � for| |
x < �/M. | | 

Solution 18.5. (partly Matjaž Konvalinka) 
For any ϕ ∈ S(R) 

∞ 

we have

∞ ∞

2 2)−1dxϕ(x)dx| ≤ ϕ(x) dx ≤ sup((1+x| | ) ϕ(x) ) (1+| | | | x| |
−∞ −∞ −∞ 

2≤ C sup((1 + x ) ϕ(x) ).
| | |

Thus S(R) � ϕ �−→ R ϕdx is continous. 
Now, choose φ ∈ C∞(R) with R φ(x)dx = 1. Then, for ψ ∈ S(R),c 

set 
x ∞ 

(18.1) Aψ(x) = (ψ(t)− c(ψ)φ(t)) dt, c(ψ) = ψ(s) ds. 
−∞ −∞ 

Note that the assumption on φ means that 
∞ 

(18.2) Aψ(x) = (ψ(t)− c(ψ)φ(t)) dt− 
x 

Clearly Aψ is smooth, and in fact it is a Schwartz function since 

d 
(18.3) (Aψ(x)) = ψ(x)− cφ(x) ∈ S(R)

dx 

0 
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so it suffices to show that xkAψ is bounded for any k as |x| → ±∞. 
Since ψ(t)− cφ(t) ≤ Ckt

−k−1 in t ≥ 1 it follows from (18.2) that 
∞ 

x kAψ(x) ≤ Cx k t−k−1dt ≤ C �, k > 1, in x > 1.| |
x 

A similar estimate as x → −∞ follows from (18.1). Now, A is clearly 
linear, and it follows from the estimates above, including that on the 
integral, that for any k there exists C and j such that 

sup x αDβAψ| ≤ C sup x α
� 
Dβ� ψ|. 

α,β≤k 
|

α�,β�≤j x∈R 
|

Finally then, given u ∈ S �(R) define v(ψ) = u(Aψ). From the−
continuity of A, v ∈ S(R) and from the definition of A, A(ψ�) = ψ. 
Thus 

dv 
dv/dx(ψ) = v(−ψ�) = u(Aψ�) = u(ψ) = = u.⇒

dx 

Solution 18.6. We have to prove that �ξ�m+m� 
u ∈ L2(Rn), in other 

words, that � 
u

Rn 

�ξ�2(m+m� ) � 2 dξ < ∞.| |

But that is true since 

u
Rn 

�ξ�2(m+m�)|�|2 dξ = 
Rn 

�ξ�2m� 
(1 + ξ1

2 + . . . + ξ2 � 2 dξ = n)
m|u|⎛ ⎞ 

u |�|2 dξ= 
Rn 

�ξ�2m� ⎝ Cαξ
2α⎠ |�|2 dξ = Cα 

Rn 

�ξ�2m� 
ξ2α u

|α|≤m |α|≤m 

and since �ξ�m� 
ξα� �u = ξ�m� 

Dαu is in L2(Rn) (note that u ∈ Hm(Rn) 
� 
(Rn), α ≤ m). The converse is also true since follows from Dαu ∈ Hm | |

Cα in the formula above are strictly positive. 

Solution 18.7. Take v ∈ L2(Rn), and define subsets of Rn by 

E0 = {x : x ,| | ≤ 1}

Ei = x : |x| ≥ 1, xi = max .| |
j 
|xj|}

nThen obviously we have 1 = n χEj 
a.e., and v = vj for vj = i=0 j=0 

χEj
v. Then �x� is bounded by 

√
2 on E0, and �x�v0 ∈ L2(Rn); and on 

Ej, 1 ≤ j ≤ n, we have 

2x� (1 + n|xj|2)1/2 

= 
� 
n + 1/|xj

�1/2 ≤ (2n)1/2 , 
|
�
xj|
≤

|xj|
|
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so � = xjwj for wj ∈ L2(Rn). But that means that �x�v = w0 +� x�vj n xjwj for wj ∈ L2(Rn).j=1 

If u is in L2(Rn) then �u ∈ L2(Rn), and so there exist w0, . . . , wn ∈
L2(Rn) so that 

n

u� = w0 + ξjwj,ξ�
j=1 

in other words 
n

u u0 + ξj�� = � uj 
j=1 

where �ξ�uj ∈ L2(Rn). Hence 

n

u = u0 + Djuj 
j=1 

where uj ∈ H1(Rn). 

Solution 18.8. Since 
∞ ∞ 

DxH(ϕ) = H(−Dxϕ) = i H(x)ϕ�(x) dx = i ϕ�(x) dx = i(0−ϕ(0)) = iδ(ϕ),−
0−∞ 

we get DxH = Cδ for C = i.−

Solution 18.9. It is equivalent to ask when �ξ�mδ�0 is in L2(Rn). Since 

δ�0(ψ) = δ0(ψ�) = ψ�(0) = ψ(x) dx = 1(ψ),

Rn 

this is equivalent to finding m such that � 2m has a finite integral over ξ�
Rn . One option is to write �ξ� = (1 + r2)1/2 in spherical coordinates, 
and to recall that the Jacobian of spherical coordinates in n dimensions 
has the form rn−1Ψ(ϕ1, . . . , ϕn−1), and so �ξ�2m is integrable if and only 
if � ∞ rn−1 

dr 
(1 + r2)m 0 

converges. It is obvious that this is true if and only if n−1−2m < −1, 
ie. if and only if m > n/2. 

Solution 18.10 (Solution to Problem31). We know that δ ∈ Hm(Rn) 
for any m < −n/1. Thus is just because �ξ�p ∈ L2(Rn) when p < −n/2. 
Now, divide Rn into n+1 regions, as above, being A0 = ξ; ξ ≤ 1 and { | |
Ai = ξ; ξi = supj |ξj , ξ . Let v0 have Fourier transform χA0{ | | | ≥ 1}
and for i

|
=

|
1, . . . , n, vi ∈ S; (Rn) have Fourier transforms ξ−n−1χAi

.i 

Since > c�ξ� on the support of v�i for each i = 1, . . . , n, each term |ξi|
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is in Hm for any m < 1 + n/2 so, by the Sobolev embedding theorem, 
each vi ∈ C0(Rn) and 

n

ξi
n+1 Di

n+1(18.4) 1 = v̂0 v�i = δ = v0 + vi.⇒
i=1 i 

How to see that this cannot be done with n or less derivatives? For 
the moment I do not have a proof of this, although I believe it is true. 
Notice that we are actually proving that δ can be written 

α ∈ Hn/2(18.5) δ = Dα uα, u (Rn). 
|α|≤n+1 

This cannot be improved to n from n + 1 since this would mean that 
δ ∈ H−n/2(Rn), which it isn’t. However, what I am asking is a little 
more subtle than this. 
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