
MEASURE AND INTEGRATION: LECTURE 9 

Invariance of Lebesgue measure. Given A ⊂ Rn and z ∈ Rn, let 
z + A = {z + x x ∈ A} be the translate of A by z. Given t > 0, let |
tA = {tx x ∈ A} be the dilation of A by t.|

Let I = [a1, b1] × · · · × [an, bn] and z = z1 × · · · × zn. Then 

z + I = [z1 + a1, z1 + b1] × · · · × [zn + an, zn + bn], 

and 
tI = [ta1, tb1] × · · · × [tan, tbn], 

and we have 
λ(z + I) = (z1 + b1 − z1 − a1) · · · (zn + bn − zn − az ) 

= (b1 − a1) · · · (bn − an) 

= λ(I). 

and 
λ(tI) = tn λ(I).·

If P is a special polygon, then λ(z + P ) = λ(P ) and λ(tP ) = tnP .�NIndeed, write P = i=1 Ii and the proof is straightforward. 
If G is an open set, then λ(z + G) = λ(G) and λ(tG) = tnλ(G). 

We have λ(G) = sup{λ(P ) P ⊂ G special polygon}, so λ(z + G) =|
sup{λ(P ) P ⊂ z + G, P special polygon}. But P ⊂ G special polygon | 
⇐⇒ z + P ⊂ z + G special polygon. Since Lebesgue invariance holds 
for special polygons, it holds for open sets. 

Finally, by similar reasoning, it can be shown that a set A ⊂ Rn 

is measurable if and only if z + A is measurable if and only if tA is 
measurable, and λ(A) = λ(z + A), λ(tA) = tnλ(A). 

A non­measurable set E ⊂ Rn . Let Q be the set of rational num­
bers. For x ∈ R, consider x+Q = {x+q . Then y ∈ x+Q ⇐⇒ | q ∈ Q}
y − x ∈ Q. 

Claim: if x, x� ∈ R, then either (i) x + Q = x� + Q or (ii) (x + Q) ∩
(x� + Q) = ∅. Proof: If the intersection is nonempty, then there exists 
y = x + q1 = x� + q2, which implies that x − x� = q1 − q2 ∈ Q. Thus, 
x + Q = x� + Q, and the claim is proved. 
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We have shown that R is covered disjointly by the sets x + Q. 
The Axiom of Choice states that there exists a set E ⊂ R such that 

every point of R belongs to only one of these sets, i.e., 

 
R = (x + Q) 

x∈E 

is a disjoint union. Alternatively, for any x ∈ R, there exists a unique 
y ∈ E and unique z ∈ Q such that x = y + z. 

Since the set Q is countable, its elements can be enumerated: Q = 
{q1, q2, . . .}. Thus, 

∞

R = (qk + E) 
k=1 

is a disjoint union. Using outer measure subadditivity and invariance 
of Lebesgue measure, 

∞ ∞

λ∗(R) ≤ λ∗(qk + E) = λ∗(E). 
k=1 k=1 

Hence we must have that λ∗(E) > 0 (otherwise λ∗(R) = 0). 
Now let K ⊂ E be an arbitrary compact subset of E and let D = 

(0, 1) ∩ Q. (The set D is a bounded countably infinite set.) Then 

 
(q + K) = D + K 

q∈D 

is a bounded set. The sets in the union are disjoint, since rational 
translates of E are disjoint. We have 

∞ > λ(D + K) (bounded) 

 
= λ (q + K) 

q∈D 

= λ(q + K) 
q∈D 

= λ(K). 
q∈D 

Since the sum is over an infinite index set, λ(K) = 0. Because K ⊂ E 
arbitrary ⇒ λ(K) = 0, we have λ∗(E) = 0. But 0 = λ(E) < λ∗(E) ⇒
E �∈ L.


Corollary 0.1. If A ⊂ Rn is measurable with positive measure, then

there exists B ⊂ A that is not measurable.
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Proof. Write A = ∪∞k=1 ((qk + E) ∩ A) as a disjoint union. Then 
∞

0 < λ(A) = λ∗(A) ≤ λ∗ ((qk + E) ∩ A) , 
k=1 

and so λ∗ ((qk + E) ∩ A) > 0 for some k. But λ∗ ((qk + E) ∩ A) ≤
λ∗(qk + E) = λ∗(E) = 0, a contradiction. � 

Invariance under linear transformations. 

Theorem 0.2. Let T : Rn → Rn be a linear map and A ⊂ Rn . Then 

λ∗(TA) = |det T λ∗(A),|
λ∗(TA) = |det T λ∗(A).| 

If A is measurable, then TA is measurable and 

λ(TA) = |det T λ(A).| 

Proof. First assume that T is invertible, i.e., that det T = 0. We will 
use the following lemma. 

Lemma 0.3. Let T be invertible and let J = [0, 1)n . Let ρ be defined 
by λ(TJ) = ρλ(J). If A ⊂ Rn, then λ∗(TA) = ρλ∗(A) and λ∗(TA) = 
ρλ∗(A). If A is measurable, then TA is measurable and λ(TA) = 
ρλ(A). 

Proof. The set J is the union of countably many compact sets: 

∞
J = [0, 1 − 1/k]n , 

k=1 

and so 

∞
TJ = T ([0, 1 − 1/k]). 

k=1 

Since T maps compact sets to compact sets, TJ is the union of count­
ably many compact sets. Thus, TJ is measurable, so the definition of 
ρ makes sense. 

We just to need to prove that λ(TG) = ρλ(G) for G open. As before, 
if the measure of open sets is invariant, then outer measure, compacts, 
and inner measures are invariant. 

Let G ⊂ Rn be open. Claim: can write G = Jk with Jk ’s disjoint k=1

and each Jk is a translation and dilation of J . (Pair by integer of those 
not contained, then pair by 1/2, then by 1/4, . . ..) Let Jk = zk + tk · J . 
Then λ(Jk ) = tnλ(J). 

∪∞

k 

TJk = Tzk + tk · TJ 
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⇒ k λ(TJ)λ(TJk) = tn 

= tn 
k ρλ(J) 

= tnρt1−nλ(Jk ).k k 

Thus, λ(TJk ) = ρλ(Jk ). Since G = ∪∞ Jk , TG = TJk , which is k=1 ∪∞k=1

a disjoint collection of measurable sets. Thus we have 
∞ ∞

λ(TG) = λ(TJk ) = λ(Jk ) = ρ · λ(G).ρ · 
k=1 k=1 

To identify ρ, check for elementary matrices just on the cube. This 
shows that in fact ρ = |det T .|

Lastly, if T is not invertible, i.e., det T = 0, then the image TRn is 
the subset of a hyperplane. This means that TA has measure zero, so 
the formula still holds. � 

A linear transformation is a rotation when the matrix is an orthogo­
nal matrix: AAT = I. In this case, it must be that det A = ±1. Thus, 
Lebesgue measure is invariant under rotation. 

Finally, there is an important subgroup of the group of all n× n real 
matrices known as the special linear group, denoted 

SL(n, R) = {A det A = 1}.| 


