MEASURE AND INTEGRATION: LECTURE 7

Review. The steps to defining Lebesgue measure. (1) measure of
rectangles (2) measure of special polygons (3) measure of open sets:
AMG) = sup{\(P) | P C G, P special polygon}. (4) measure of com-
pact sets: A(K) = inf{\(G) | K C G,G open}. (5) Inner A, and outer
A* measures.

Lebesgue measurable sets (with finite outer measure). Let A C
R™ and A*(A) < oo (A has finite outer measure). Then we write that
Ae Ly < N(A) = \(A) and define measure of A to be

AA) = X (A) = A (A).

We know that Ly contains all compact sets and open sets of finite
measure.

Lemma 0.1. Let A, B € Ly. If A and B are disjoint, then AUB € Ly
and N(AU B) = \(A) + \(B).

Proof.
A (AUB) < X(A)+ X(B) (Outer measure subadditivity)
= AA) + A\(B) (A, B € Ly)
= A(A) + A\(B) (Property of inner measure)
< M(AUB) < X(AUB)

Main approximation theorem.

Theorem 0.2. Let A € R" and \'(A) < oco. Then A € Ly if and
only if for all € > 0 there exists K compact and G open such that
KCACG and N(G\ K) <e.

Proof. If A € Ly, then there exists G D A open such that A\(G) <
A*(A)+¢€/2 and there exists K C A compact such that A(K) > A\ (A4)—
€/2. Since K C G, we can write G = K U (G \ K) as a disjoint union
of sets in Ly, and so A\(G) = A(K) + A(G \ K). That is,

MG\ K) = MG) — ME) < A(A) +¢/2 — (A(A) — ¢/2) =e.
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For the other direction, fix ¢ > 0 and choose K C A C G such that
MG\ K) < e. Then

AN(A) <MNG) =AME)+ MG\ K) < ANEK)+e< (A +e
Since this holds for any € > 0, we have A\*(A4) < A\ (A4) < A*(A), and

hence A\.(A) = A*(A). O
Corollary 0.3. If A, B € L, then AUB, ANDB, and A\ B are all in
Ly.

Proof. By the approximation theorem, for any € > 0, we can find K; C

A C Gyand Ky C B C Gy such hat A\(G1\ K1) < €/2 and M\(G2\ K3) <

€/2. Then K1 UK, C AU B C G UGy, and so

(G1UGY) \ (K1 UKy) = (G UGe) N (K U Ky)°

=GN (K UKy) UGN (K U Ky)e
CGINK{UG,NKS
= (G1\ K1) U (G2 \ K2).

Thus,

MGLUG: \ (K1 UKy)) < ANG1\ Ky) + MGy \ Ka)
<€/2+€/2 =k,

and AUB € Ly. Let K;,G; (i = 1,2) be as before. Then K; N Ky C
ANB C Gy NGy We have

(G1 NGy \ (K1 N Ky) = (G NGe) N (K N Ky)°

= (G1NGy) N (K] UKY)
=(Gi1NG:NK7)U (G NGy N KY)
C (GiNK))U(GyNKS)

C(G1\ K1) U (G \ Ky).

Thus,

<€/2+¢€/2=c¢.
The proof for A\ B is similar. O
Countable additivity. Let Ay € Lofork =1,2,.... Let A = U2 Ay

and assume \*(A) < oo. Then A € Ly and A(A) < > o, AM(Ax).
Furthermore, if the Aj’s are disjoint, then A(A) = >"°, A(Ay).
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Proof. First, the disjoint case. We have

Z A*(Ag)  (outer measure subadditivity)
k=1

A(A4)
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M(Ar)  (each Ay € Lo)
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Since A, (A) = X\*(A4), A € Ly, and it also follows that A(A) = > 7 | AM(Ag).
In general, rewrite A as a disjoint union as follows. Let B; = Aj,

By = Ay \ A1, By = A3\ (A1 U Ay), and so on. Each By € Ly, clearly

the By’s are disjoint. It is straightforward to check that A = U, By:

the fact that the union is a subset of A is obvious, and if x € A, then

x € By or By or ... Bj. From the preceding disjoint case we know that

Upe, By € Lo, and

AA) = 2 ([] Bk) _SOAB) <3 AA.

where in the last step we noticed that each By C Aj. O

Extension to arbitrary measurable sets. Let A C R™. Then A is
Lebesgue measurable (and we write A € £) if for all M € Ly, we have
AN M € Ly. In this case, define

AMA) = sup {AN(ANM)}.

MeLy

Proposition 0.4. The new A is consistent with all A\ when \* < co.
In other words, if A C R™ and AM(A) < oo, then A € Ly <= A€ L,
and the definitions of A\(A) agree.

Proof. If A € Ly, then the lemma implies that AN M € Ly for all
M € Ly; thus A € L. We know B(0, k), the ball of radius k£ with
center at the origin, is in £y. Let Ay = AN B(0, k). Then by definition
of £, we have A, € L. Also, A = U2 Ay € Ly by the countable
subadditivity theorem.
Next, take A € Ly. Let A(A) to be the new definition, that is,
AMA) = sup {MANM)}.
MeLo

Then ANM C= MANM) < AMA) = MA) < AA). Since A € Ly,
choose M = A in definition of A. Then A(A) > A(A), and thus equality
must hold. 0

<
A
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Properties of (arbitrary) Lebesgue measurable sets.
(1) Ae L= A€ L,
(2) If A, e L (i=1,2,...), then U2 A; € L.

Proof. (1) For M € Ly, NTS that A°“NM € Ly. We know ANM €
Ly. Since AN M = M\ (AN M), and both M € L, and
ANM € Ly, we are done.

(2) For M € Ly, A;in M € Ly. We have (U2, A;) N M = U2, (AN

M) and by countable additivity the last term is in L.

(3) Let A = U2 A;. Then AN M = U2 (Ax N M) is a disjoint
union. Thus, A(AN M) = S 02 AMA N M) < 307 A(Ay).
Taking sup over all M gives A(A) < Y2 A(A). For the other
direction, fix N. Let My,..., My € Ly be arbitrary and put
M = UN_, M,. Then

A(A) > A(AN M)
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Since M), are arbitrary, taking sup over all My gives A\(A) >

SV A(AR). Letting N — 0o, A(A) > S70° A(Ay).
O

Corollary 0.5. By (1) and (2), L is a o-algebra.

Corollary 0.6. By (3), \ is a positive measure on L, and thus (R™, L, \)
is a measure space.



