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MEASURE AND INTEGRATION: LECTURE 5 

Definition of L1 . Let f : X → [−∞ , ∞ ] be measurable. We say that 
f is in L1 (written f ∈ L1(µ) or simply f ∈ L1) ⇐⇒ f + dµ < ∞� �	 X 
and f − dµ∞ f dµ < ∞ . Define

X ⇐⇒ 
X | | 

f dµ = f + dµ − f − dµ 
X X X 

when at least one of the terms on the right­hand side is finite. 

Integral of complex functions. Let f : X C be measurable. That →
is, f = u + iv where u, v : X R are measurable. Then � 

→


f ∈ L1(µ) ⇐⇒ �X 
| F | dµ < ∞


u dµ < ∞ and v dµ < ∞ .⇐⇒ 
X 
| |	 | |

X 

Define

f dµ = u dµ + i v dµ 
X �X �X	 � � 

+	 + = u dµ − u− dµ + i v dµ − i v− dµ. 
X X X X 

Theorem 0.1. Let f, g ∈ L1(µ). If α, β ∈ C, then αf + βg ∈ L1(µ) 
and � � � 

(αf + βg)dµ = α f dµ + β g dµ. 
X	 X X 

Proof. First,	 αf + βg is measurable, and by the triangle inequality, 
α g , so | αf + βg| ≤ | �| | f | + | β| | | � � 

α f + | β| g < ∞ .| αf + βg| ≤ | | | | | |
X	 X X 

Just need to show that 

(1) �X (f + g)dµ = � X f dµ + 
X g dµ, and 

(2) 
X (αf )dµ = α 

X f dµ. 
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2 MEASURE AND INTEGRATION: LECTURE 5 

For (1), assume f, g real; the complex case follows from the real case. 
+Let h = f + g. Then h+ − h− = f + − f − + g − g−, so h+ + f − + g− = 

f + + g+ + h−. Since the integral is linear for non­negative functions, 

+h+ + f − + g− = f + + g + h− ⇒ 

+h+ − h− = f + − f − + g − g−. 

Thus, f + g = f + g. 
For (2), let α = a + bi for a, b ∈ R. Then 

αf = (a + bi)(u + iv) = au + aiv + biu − bv 

= (au − bv + i(av + bu) 

= (au − bv) + i (av + bu). 

Also, � �� � � 

(a + bi) (u + iv) = (a + bi) u + i v 

= a u + bi u + ai v − b v. 

So, just need to show that au = a u. If a = 0, then both sides 
vanish. If a > 0, then 

(au) = (au)+ − (au)− 

+ = a · u − a · u− 

+ = a u − a u− = a u. 

If a < 0, then 

au = (au)+ − (au)− 

+ = (−a) · u− − (−a) · u 

+ = −a u− − (−a) u �� � � � 
+ = a u − u− = a u. 
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3 MEASURE AND INTEGRATION: LECTURE 5 

Theorem 0.2. If f ∈ L1(µ), then 

f dµ f dµ.≤ 
X 
| |

X 

Proof. For some θ ∈ [0, 2π), 

f dµ = iθ e .
f dµ 
X X 

Hence, 

= e−iθ f dµ = (e−iθ f )dµf dµ 
X X X 

= Re e−iθ f dµ 
X 

= Re(e−iθ f )dµ 
X 

e−iθ f dµ = f dµ.≤ | |
X X 

Dominated convergence.


Theorem 0.3. Let fn : X C be a sequence of measurable functions,
→
and assume that f (x) = limn→∞ fn(x) (that is, the sequence fn con­
verges pointwise). If there exists g ∈ L1(µ) such that ≤ g(x)|fn(x)|
for all n and for all x ∈ X, then f ∈ L1(µ) and 

lim fn − f dµ = 0, so lim fn dµ = f dµ. | |
n→∞ X n→∞ X X 

Proof. Since fn(x) ≤ g(x) for all n, the limit f has the property that 
that f g < so f

|
. 

|
This ∈ L1(µ). 

≥ 0. 
f g(x)≤
Next, fn − f
| | | | | ≤ |

≤ 2g, which means that 2g −
| | ∞,
means 

fn + f fn − f| || ≤ |
Applying Fatou’s lemma, 

| | | | 

2g dµ ≤ lim inf 
X 

(2g −
 fn − f| |)dµ 
X 

= 2g dµ + lim inf
 fn − f dµ− | |
X X 

= 2g dµ − lim sup fn − f dµ.| |
X X 
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4 MEASURE AND INTEGRATION: LECTURE 5 

Since 2g < ∞, it can be cancelled from both sides. Thus, 
X 

lim sup fn − f dµ ≤ 0,| |
X 

and so 

lim fn − f dµ = 0.| |
X 

From the previous theorem, 

(fn − f )dµ fn − f dµ≤ 
X 
| |

X 

fn dµ − f dµ fn − f dµ → 0≤ 
X 
| |⇒ 

X X 

⇒	
X 

fn dµ → f dµ.

X


Sets of measure zero. Let (X, M, µ) be a measure space and E ∈ 
M. A set E has measure zero if and only if µ(E) = 0. If f, g : X → C, 
then f = g almost everywhere (a.e.) if N = {x f (x) = g(x)} has 
measure zero. Define an equivalence relation f ∼ g if f = g a.e. 

Proposition 0.4. If f ∼ g, then, for all E ∈M, 
E f dµ = 

E g dµ. 

Proof. Write E as disjoint union E = (E \N ) ∪ (E ∩N). Then, since 
f = g away from N , and since N has measure zero, 

f dµ = f dµ + f dµ

E∩N 

= g dµ + 0 = g dµ. 
E\N E 

� 

Completion of a σ­algebra.


Theorem 0.5. Let (X, M, µ) be a measure space. Let


M∗ = {E ⊂ X ∃A, B ∈M : A ⊂ E ⊂ B & µ(B \ A) = 0}.|
Now define µ(E) = µ(A) for all E ∈M∗. Then M∗ is a σ­algebra and 
this definition of µ is a measure. 

The measure space (X, M∗, µ) is a called the completion of the mea­
sure space (X, M, µ). A measure space is complete if it is equal to its 
completion. 

E E\N 

Note.
 If f is only defined a.e. (say, except for a set N of measure 
zero), then we can define f (x) = 0 for all x ∈ N . f is well defined. ⇒ 
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5 MEASURE AND INTEGRATION: LECTURE 5 

Theorem 0.6. (a) Let f : X → [0, ∞] be measurable, E ∈M, and 

E f dµ = 0. Then f = 0 a.e. on E. 
(b) Let f ∈ L1(µ) and 

E f dµ = 0 for every E ∈ M. Then f = 0 
a.e. on X. 

Proof. (a) Let An = x ∈ E f (x) > 1/n}. Then 

1 
f dµ ≥ f dµ ≥ 1/n dµ = µ(An), 

E An An 
n 

i=1∪∞which implies that µ(An) = 0. But {x f (x) > 0} An|
∞ (A ) = 0. µ ni=1 

( ) 0≥ }u x
+ += 0 and by (a), = 0 a.e. u

x . Then f
E

{ | 

= 
and µ({x f (x) > 0}) ≤|

= u + iv. Choose E(b) Let f � = = 
+ + i 

E v u
E

⇒u
E 

∞ (E ) < ∞µ kk=1Theorem 0.7. Let Ek ∈M such that 
every x ∈ X lie in at most finitely many Ek . 

. Then almost 

Proof. Let A = x ∈ X x ∈ Ek for infinitely many k}. NTS µ(A) = 0. { |
χEk Then x ∈ A ⇒ g(x) = ∞. We have ∞

i=1Let g = .
 ⇐
∞∞

g dµ = χEk dµ = µ(Ek) < ∞. 
X i=1 X i=1 

In other words, g ∈ L1(µ) and thus g(x) < ∞ a.e. � 


