MEASURE AND INTEGRATION: LECTURE 4

Integral is additive for simple functions.

Proposition 0.1. Let s and t be non-negative measurable simple func-
tions. Then [ (s+t)du= [, s du+ [t dpu.

Proof. Let E € M and define p(E) = [, s du. First we show that ¢ is
measurable. To this end, let £; € M with E; disjoint and £ = U2, F;.
Then
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Write X = U, ;E;; as a disjoint union. Then
/ s d,u—i—/ tdu:/(s—l—t)d,u.
X X X

Date: September 16, 2003.

so that



2 MEASURE AND INTEGRATION: LECTURE 4

Next, we want to prove

/X(f+g)du=/xfdﬂ+/ngu~

If s < f simple and t < g simple, then s +t < f + g simple. The only
thing we know so far is that

/X(f+g)du2/xfdu+/xgdu.

One way to obtain equality is to define an upper integral and a lower
integral, and say that a function is integrable <= its upper and lower
integral are equal and finite. Then we should prove that f integrable
<= f measurable. But this is not necessary, and we will use the
definition we have.

Monotone convergence.

Theorem 0.2. Let f,: X — [0,00] be a sequence of measurable func-
tions such that

(a) 0< fi< fo<-- < oo, and

(b) fu(x) — f(z) asn — oo for all x € X.

Then fX frdp — fX fdup as n — oo.
Proof. Since f; < fiyq1 for all 4, we have [ f; < [ fizq. Thus [ fi — «

for some a € [0,00]. Also f, < f= [fi < [f,s0a < [f. Next, let
s be simple and measurable with 0 < s < f and let ¢ be a constant
such that 0 < ¢ < 1. Define E,, = {z | fo(zx) > cs(x)} forn=1,2,....
Then FE; is measurable and £} C Ey C -+, and X = U2, E;. Indeed,
if f(x) = 0 for any # € X, then x € Fj, and if f(x) > 0, then
cs(x) < f(x). Since f, — f, fu > cs(x) for n large; thus z € E,, for n
large.
Lastly,

/fnduz fndMZC/ s dp.
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a > ¢ lim s dpu.
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Thus o > ¢ [, sdp for any ¢ < 1. Let ¢ — 1. Then o > [, s dp for
any simple, measurable 0 < s < f. We conclude that

a:/fd,u: lim f, du.
X n—oo

Letting n — oo,
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Integral is additive for non-negative measurable functions.

Theorem 0.3. Let f,: X — [0,00] be a sequence of measurable func-
tions and f(x) =3 " folx). Then [\ f dp=730"1 [ o dp.

Proof. First, claim if f, g measurable, then [, f+g= [, f+ [ 9. Let
0 < s < sy <--- be simple, measurable, and s; — f. Similarly, let
0 <t <ty <--- be simple, measurable, and t;, — ¢g. Then s; + ¢;
are simple and s; +t; — f + g, which implies that [, (s; + t;)du =
| ¥ Si dp+ / « ti du. By the monotone convergence theorem, the claim

is proved. Using induction, [ (val fi> dp = va_l Jx [i dp.
Let gy = S0, fi. Then gy — 322, f, = f(z) as N — 0o mono-

tonically. Thus
[ > fwdu= tim [ g d
Xn:l N—oo

t

Interchanging summation and integration.

Corollary 0.4. Let X = Z* = {1,2,3,...} and p be the counting
measure. Let a;; > 0 and f; = a;;: ZT — [0,00]. Then

/Zf] - Z/fja
J=1 j=1
so that o o
ZZ% = Zzai]‘-
=1 j=1 j=1 i=1
Fatou’s Lemma.

Lemma 0.5. Let f,: X — [0,00] be a sequence of measurable func-
tions. Then

/ <hm inf fn dp < hm 1nf/ fn dp.
b's

n—oo
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Proof. Let gx(z) = inf;>k fi(x). Then gy < go < --- and

o = B nt fe

Also, gr < fi, so monotone convergence implies that

/ liminf f, dpu = / lim g;, dp
X X

= lim/ g di
X

= lim inf/ g du
X

< liminf/ fr dp.
X



