MEASURE AND INTEGRATION: LECTURE 3

Riemann integral. If s is simple and measurable then

N
[ s =Y (e,
X i=1
where s = Efil a;xg,. If f >0, then

/ fdp =sup {/ sdp | 0 < s < f, s simple & measurable} )
X X

Recall the Riemann integral of function f on interval [a,b]. Define
lower and upper integrals L(f, P) and U(f, P), where P is a partition
of [a,b]. Set

/f:sgpL(f,P) and /f:i%fU(f,P).

A function f is Riemann integrable <=

/f=]ﬁ

in which case this common value is [ f.

A set B C R has measure zero if, for any € > 0, there exists a
countable collection of intervals {I;}3°, such that B C U2, I; and
S A(I;) < e. Examples: finite sets, countable sets. There are also
uncountable sets with measure zero. However, any interval does not
have measure zero.

Theorem 0.1. A function f is Riemann integrable if and only if f is
discontinuous on a set of measure zero.

A function is said to have a property (e.g., continuous) almost ev-
erywhere (abbreviated a.e.) if the set on which the property does not
hold has measure zero. Thus, the statement of the theorem is that f is
Riemann integrable if and only if it is continuous almost everywhere.
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Recall positive measure: a measure function pu: M — [0, 00| such
that p (U2, E;) = > o0y p(E;) for E; € M disjoint.

Examples.
(1) “Counting measure.” Let X be any set and M = P(X) the set
of all subsets. If £ C X is finite, then p(F) = #E (the number
of elements in £). If £ C X is infinite, then pu(E) = oo.
(2) “Unit mass at xo — Dirac delta function.” Again let X be any
set and M = P(X). Choose zg € X. Set

1 1f£L’QGE,
E pu—
HE) {o if 70 & E.

Theorem 0.2. (1) If E C R and u(E) < oo, then u(d) = 0.
(2) (Monotonicity) A C B = u(A) < u(B).
(3) IfA; e M fori=1,2,..., A1 C Ay C -+, and A = Uz-oilAi,
then u(A;) — u(A) as i — oo.
4) If Ay e M fori=1,2,..., A1 D Ay D -+, u(4;) < o0, and
A =02, A;, then p(A;) — u(A) as i — oo.

Proof. (1) E=EU0 = u(E) = u(E) + n).

(2) B = AU(B\ A) = u(B) = pu(4) + (B \ A) > u(A).

(3) Let B1 = Al, B2 = A2 \ Al, Bg = Ag \ AQ, .... Then the
B; are disjoint, A, = By U---U B, and A = U2, B;. Thus,
W(Ay) = pu(Br) + -+ u(By) = >, u(B;), and (3) follows.

(4) Let C, = A1\ A,. Then C; C Cy C ---. We have \(C,) =
)\(A1> — )\(An) AISO, Al \ A= UnCn ThUS, Al N (ﬂAz)c =
U(A4; \ 4,), and so

pAL\ A) = lim p(C) = p(Ar) = Tim p(Ay).
Hence, pu(A1) — u(A).

Properties of the Integral.
(a) If0 < f < gon E, then [, fdu < [, gdpu.
(b) fAC B, A, BeM,and f >0, then [, fdu < [, fdpu.
(¢c)If f > 0 and ¢ € [0,00) is a non-negative constant, then
Jpefdu=c [, fdu.
(d) If f(x) =0 for all z € E, then [, fdu = 0.
(e) If u(E) =0, then [, fdu = 0.
(f) If f >0, then [, fdu = [, xefdu.

Proof. (a) If s < f is simple, then s < g so the sup on g is over a
larger class of simple functions than the sup on f.
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(b) We have E; N A C E; N B for all E;. If s is simple,

N N
/ sdp = Z%‘M(Ei NA) < Z%‘M(Ei NB) = / sdj.
A =1 i=1 B
(¢) For any simple s, [ csdu = c [, sdp since
Z(Cai)XEi = CZ Qi XE;-

For any constant ¢, s < f <= c¢s < c¢f. Thus,

/cf:sup/s: sup/s:sup/cs':c/f.
s<cf s/e<f s'f
N

(d) Let s < f be simple and s = > .", a;xg,. Without loss of
generality, «; = 0 and F4 D E. Thus,

N
/ sdp = Z%‘M(Ei NE)=au(E)=0.
B i=1

(The convention here and throughout is that 0 - co = 0.)
(e) If s < fand s = >, X, then [, s =3 a;u(ENE;) = 0.
(f) This could have been the definition of the integral.
U



