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MEASURE AND INTEGRATION: LECTURE 24 

Inequalities 

Generalized Minkowski inequality. Let Rn = R� × Rm and z = 
(x, y) ∈ Rn If Rn C is measurable, then . → 

f(x, y)|p dx : Rm → R = �fy �Lp(R�) : R
m R 

R� 

| → 

is Rn­measurable for 1 ≤ p < ∞. 
Assume that 

dy < ∞.�fy �Lp(R�)
Rm 

Then for a.e. x ∈ R� , fx(y) : Rm C is in L1(Rm). Let → 

F (x) = fx(y) dy. 
Rm 

Then F (x) : R� C is R�­measurable and we have → 

dy. �F �Lp(R�) ≤ �fy �Lp (R�)
Rm 

Note this is 

f(x, y) dy


�1/p �� �1/pp 
p dx dy. dx f(x, y)≤ | |

R� Rm Rm R� 

We could replace by X, Y σ­finite measure space and Y = {p1, . . . , pn}, 
dy the counting measure and get old Minkowski’s. 

Proof. We have


F (x)| ≤ dy, |
Rm 

|fx(y)| 

so without loss of generality, assume f ≥ 0. If p = 1, then Fubini’s 
theorem applies; so now let p > 1. 

Define g : R� × Rm R≥0 by ⎧ ⎪⎨ 

→ 

y �−1/p�
f(x, y) �f

Lp(R�) if 0 < �fy �p < ∞; 

g(x, y) = 0 if �f = 0; y �p 

if �f = y �p ∞.∞ 
⎪⎩


Then, for each y, 
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2 MEASURE AND INTEGRATION: LECTURE 24 

(1) f (x, y) ≤ g(x, y) �f 1/p� 
for a.e. x, and y �p 

(2) 

1/p= �fy �p .�gy �Lp(R�) 

Then 

F (x) = f (x, y) dy 
Rm 

g(x, y) �f 1/p� 
dyy �p≤ 

Rm �� �1/p� 

dyLp(Rm) �fy �p≤ �gx�

,= �gx�Lp(Rm) · C
1/p� 

where C = Rm �fy �p dy. 
We now use Fubini’s theorem: 

�F (x)�p 
Lp(R�) ≤ Cp/p� p dx�gx�Lp(Rm )

R� 

= cp−1 g(x, y)p dy dx 
R� ��Rm 

= cp−1 g(x, y)p dx dy 
Rm R� 

p= cp−1 �gy �Lp (R�) dy 
Rm 

dy= cp−1 �fy �Lp(R�)
Rm 

= cp−1 c = cp = �fy �Lp(R�) dy. 
Rm 

Thus, 

�F (x)�Lp(R�) ≤ �fy �Lp(R�) dy 
Rm 

and so 

f (x, y) dy
 dy. �fy �Lp(R�)≤ 
RmRm Lp(R�) 
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3 MEASURE AND INTEGRATION: LECTURE 24 

Application. Let f ∈ L1(Rn and g ∈ Lp(Rn). Then f ∗ g ∈ Lp(Rn) 
since 

f (y)g(x − y) dy

p �1/p 

dx 
Rn Rn �� �1/p 

f (y)g(x − y) p dx dy≤ 
Rn Rn 

| |�� �1/p 

g(x − y) pf (y)| dx dy|
Rn 

| |= 
Rn 

= f (y)| �g�p dy

Rn 

|


= �f �1 �g�p .


Distribution functions. Suppose f : X → [0, ∞] and let µ{f > t} = 
µ(x f (x) > t}.| 

Theorem 0.1.
 ∞ 

f dµ = µ{f > t} dt 
X 0 

and ∞ 

µ{f > t}tp−1f p dµ = p 
X 0 

dt


More generally, if ϕ is differentiable, then 
∞ 

ϕ ◦ f dµ = µ{f > t}ϕ
0 

(t) dt. 
X 

Proof. We have 
f (x)||

dt dx
f dx =

Rn 

| | 
Rn 0 

= χ[0,f (x)](t) dt dx 
Rn� R 

= χ[0,f (x)](t) dx dt 
R Rn 

Then 
∞

p p > t} dtf dx =
 µ{|f |
Rn 

| |
0 
∞ 

> t1/p} dtµ{|t|
0 

= 

= p 
0 

∞ 

> s}sp−1 ds,µ{|f | 
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letting s = t1/p, so sp = t and dt = psp−1ds. � 

Marcinkiewicz interpolation. Recall the maximal function 

1 
Mf(x) = sup f(y)| dy. 

0<r<∞ λ(B(x, r)) 
|

B(x,r) 

Note if f ∈ L∞, then �Mf�∞ ≤ �f�∞. Thus, M maps L∞ into itself: 
M : L∞ L∞.→

On the other hand, by Hardy­Littlewood, if f ∈ L1, then


3n


(0.1) µ{Mf > t} ≤ 1 , t 
�f�

and M maps L1 to weak L1 . 
Using a method called Marcinkiewicz interpolation, we prove the 

following. 

Theorem 0.2. Let 1 < p < ∞ and f ∈ Lp. Then Mf ∈ Lp, and 

(0.2) �Mf�p ≤ C(n, p) �f�p , 

where C(n, p) is bounded as p →∞ and C(n, p) →∞ as p → 1. 

Proof. Observe that Mf = M f , so assume f ≥ 0. Choose a constant | |
0 < c < 1 (we will choose the best c later). For t ∈ (0,∞), write 
f = gt + ht, where 

f(x) f(x) > ct; 
gt(x) = 

0 f(x) ≤ ct. 

So, 0 ≤ ht(x) ≤ ct for every x, and thus ht ∈ L∞. We have 

Mf ≤ Mgt + Mht ≤ Mgt + ct 

from (0.2). Thus, Mf − ct ≤ Mgt, o if Mf(x) > t, then (1 − c)t ≤
Mgt(x). 

Let Et = {f > ct}. Then 

λ{Mf > t} ≤ λ{Mgt > (1 − c)t}
3n 

from (0.1) 1≤ 
(1 − c)t 

�gt�

3n 

= f dx. 
(1 − c)t Et 
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5 MEASURE AND INTEGRATION: LECTURE 24 

Thus, 
∞ 

(M f )p dx = p λ{M f > t}tp−1 dt 
Rn 0 

3np ∞ 

tp−2 f dx dt≤ 
1 − c 0 Et � � � f (x)/c 

=
3np

f (x) tp−2 dt dx 
1 − c Rn 0 

3np 
� 

1 f (x) p−1 

= f (x) dx 
c1 − c Rn p − 1 

3np c1−p 

=
1 − c 

· 
p − 1 Rn 

f (x)p dx 

= C(n, p) �f �p . p 

Thus, 
3npc1−p 1/p 

.�M f �p ≤ 
(1 − c)(p − 1) 

�f �p 

→1 as p→∞ 

Choose c = 1/p� = (p − 1)/p; this gives the best constant. � 


