MEASURE AND INTEGRATION: LECTURE 23

Lebesgue’s differentiation theorem.

Theorem 0.1. Let f € L'(R"). Then for almost every x € R™,
1
lim—/ fly) = f(x)| dy=0.
r—0 )\(B(l‘, T)) B(z,r) ‘ ( ) )
In particular, for a.e. x € R",
1

l{%m/jg(m) fly) dy = f(x).

Remark. This looks like the FTOC I almost everywhere: the deriva-
tive of the integral of f = f. Next time, prove this and show it implies
FTOC in the case of R.

Proof of theorem. Obviously,

(S [/ i) 1)
_ )m [ v -sw

1
< W/B(:m) |f(y) — f(o)] dy.

Thus, the particular case of the theorem follows from the first state-
ment.
Recall that if f € L', we can define the maximal function M f, and

Mo | 25() = 1) < 200
Also,
o | MFG@) 2 1y = (o | M) > ¢ =1/}
M | Mf(w) 2 1) < S0
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Define

fr(z) =1ir1{1551p —A(B(;r)) /B(M) |f(y) — f(x)] dy.

We want to show that f*(z) = 0 a.e. The function f* has the following
properties.

(1) f*>o0.
2) (f+g) < f+g"

Proof.
/B 10 +00) = 1)~ 9@ dy
_ /B ) = 1@+ 9lo) = g(a)] dy

<[ sl [ o) o)

B(z,r)

(3) If g is continuous at x, then ¢g*(z) = 0.

Proof. For any € > 0, there exists 0 such that |g(y) — g(z)| <€
for all y € B(x,9). So, for 0 <r <4,

1 / 1
B 9(y) — 9(@)] dy < ——eA(B(x,7)) = €.
)\(B(;U,T)) B(z,r) )‘(B(xv"’))
Thus, ¢*(z) < € for any ¢, and hence g*(z) = 0. O

Note that this is FTOC for continuous functions. The strat-
egy is that we know it is true for continuous functions, so we
will approximate f € L*(R™) by g € C°(R™).

(4) If g is continuous, then (f — g)* = f*.

Proof.
(f=g </ +(=g) =1
and

(-9 +g=(-9)

(B) fr<Mf+Ifl]



MEASURE AND INTEGRATION: LECTURE 23 3

Proof.
1
AN B(z,71))
1

< T / @I+ dy

1
= (5@ L, 01 @) 150
< Mf+|f(2)]

/B ) 5@ dy

(6) Have not proved that f* is measurable, but claim

N({z | frz) > 1)) < w Ifl,  forall 0 <t < oo

Proof. If f*(z) >t at z, then from (5),
t < Mf(x)+|f](x),
and so either M f(z) > t/2 or |f(x)| > t/2. So,
{f* >ty c{Mf>t/2y U{|f] > t/2}.
Thus,
NM{z | (@) > 1)) < A({a | Mf(z) > t/2}) + A({x | |f(2)] > /2})

3", A
t/2 -+ t/21'

The last step used the theorem from last time and Chebyshev’s
inequality for L! functions. U

<

To finish the proof, given € > 0, from the approximation theorem
(C.(R™) dense in L), there exists g € C.(R™) with ||f — g, <€ (f* =
(f —g)".) Thus,

Nz | (@) > 1)) = X({z |[(f — 9)"(2) > 1})
23" +1
< 2Dy,

2(3" + 1)6

— €

Since € is arbitrary, \*({z | f*(x) > t}) = 0. In particular, \*({z | f*(x) >
1/k}) = 0 for all k, and {z | f*(x) > 0} = U2 {x | f*(z) > 1/k}.
Since countable union = A\({z | f*(z) > 0}) = 0. Since f* >0, f* =0
almost everywhere. O

<
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Lebesgue set. Let f € L'(R"). Then z € R" is in the Lebesgue set
of f if there exists a number A such that

1
From before, we see that A is unique (for each x).

Note that f does not have to be defined at x in order for x to be
in the Lebesgue set of f. If f = g a.e., then the Lebesgue set of f
coincides with the Lebesgue set of g. If we think of functions in L!(R")
as equivalence classes, then the Lebesgue set of f is well defined.

Lebesgue’s theorem. Almost every € R" is in the Lebesgue set of
f, and if f: R®™ — R is the representation of equivalence classes [f],
then A = f(x). For emphasis: If [f] € L{ _ is an equivalence class, then
for = in the Lebesgue set, f(z) is well defined (defined by the above
limit).

For example, let

_Jsin(1/x) x #0;
9lw) = {0 r=0.

Then 0 is not in the Lebesgue set of g. Recall: continuous, then in
Lebesgue set.

Regular convergence. A sequence of measurable functions Ey, F, . ..
converges reqularly to x if there exists ¢ > 0 and 71,79, ... such that
Er C B(z,1k), limg_oo 7 = 0, and A(B(z, 7)) < cA(Ey) for all k.

Theorem 0.2. Let f € L'Y(R™), x in the Lebesque set of f, and

Ey, Es, ... converge reqularly to x. Then
1
x) = lim dy.

The point here is that we do not have to use balls.

Proof.

‘( A(}Ek) . f(y) dy) — f(x)

1
< NE Ek|f(y)—f(93)| dy

< SO o O T

— 0

as k — oo since x is in the Lebesgue set of f. O
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FTOC II.
Theorem 0.3. Let f € L'(R) and let a € R. Define

r) = ' — fR W)X (o) (y) dy T > a;
e /a F) dy {_fRf(y)X[x,a](y) dy =z < a.

Then F is differentiable a.e. and F' = f a.e.

Proof. Almost every x € R is in the Lebesgue set of f. We show that
F'(x) = f(x) for x in the Lebesgue set of f. By the previous theorem,
lim

ESTTA f(y) dy = f(x)

for any regular sequence converging to x. Let rp > 0 such that limr, =
0 and Ey = (x,x + ). Then Ej regular and

T+T)
lim ~ / f(y) dy = f(x),

k—oo T
ie.,
F - F
lim (@ + %) (z) = f(x).
k—o0 Tk

Since Tk arbitrary,
F(x+ h)—F

and F is right differentiable. Repeat the argument with Ey, = (x—r, x)
and

lim
h—0+

. F(z+h)—F(z)

hli%li ]’L - f(l’),
so F'is left and right differentiable and both one-sided derivatives equal
f(z). Thus, F'(z) = f(z) for any z in the Lebesgue set, which is almost
everywhere by the Lebesgue theorem. U




