MEASURE AND INTEGRATION: LECTURE 21

Approximations. Let
0 t <0;
h(t) = -
exp(—1/t) t>0.

Then h € C* (infinitely differentiable with continuous derivatives).
Define ¢: R” — R by ¢(z1,...,2,) = h(1 — |z?). If |z[> > 1, then
1—]z]> <0= ¢ =0on B(0,1)¢. Thus, ¢ € C=(R"). Redefine ¢ so
that [, ¢ dz = 1.

Now define ¢,(x) = a "¢(x/a). Then ¢, supported on a ball of
radius a and

Go(x)dr =1
Rn

by a linear change of variables.
Given f, define fo(2) = f*da = [gn [(y)Pa(x —y) dy. Then f,(x) €

C§° since

o
ERORL / 1y aw % —v) dy,

and if f has compact support, then so does f,.
Suppose f € L'(R") and define

g(r) = . f@W)oa(r —y) dy = f * ¢

Note that ¢,(x — y) is bounded and the integrand is integrable.
Lemma 0.1. The function g(x) is continuous.

Proof. Fix xy. Then

lim g(x) = lim [ f(y)da(z —y) dy,

T—T0 T—T0 Jpn
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and since f(y)o.(z —y) < C'|f(y)| € L', we may apply LDCT so that
the RHS above equals

_ / lim f(y)ga(z —y) dy

n T—XQ

= /. f(y)pa(r —y) dy since ¢, € C.
= g(wo).
O

Lemma 0.2. The kth partial derivatives of g exist and are continuous
fork=1,2,.... In other words, g € C'°.

Proof. Let e, = (0,...,0,1,0,...,0), the vector whose kth coordinate
is equal to 1 and all other coordinates are zero. We have

gz +ter) — g(x) _ Jon SW)Pal + tex —y) dy — [z f(y)alz —y) dy

t t
:/ f(y) (sta(x"i_tek_i)_gba(x_y)) dy
Since
¢a(x+t6k_y) —qba(x—y) _ o /
t  Ozk Gale’ ~y) @ =zt e, 0<t/<t

is less than some constant C' in absolute value, the integrand above is
dominated by C'|f| € L'. Thus,

g _ lim g(x +tey) — g(x)
&vk 10 t
a 13 - - Wa -

0
= /. f(y)a—xkczﬁa(fﬂ —y) dy.

Thus, the partial derivatives exist, and

0 ¢a<x - y) € 007

Oz,

so by the first lemma, dg/0xy is also continuous. By induction, we can
conclude that g(z) € C*. O

Lemma 0.3. If f € C.(R"), then g € C.(R").
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Proof. There exists R > 0 such that f = 0 on B(0, R)°. Choose x so
that g(z) # 0. Then there exists y such that f(y)pa(x —y) # 0. If
f(y) # 0, then y € B(0,R). If ¢po(x —y) # 0, then z —y € B(0,a).
Thus,

[z =]z —y+yl <|z—yl+lyl <a+R,
and so g(x) =0 if |x| < R+ a. In other words, g € C°(R"). O

Theorem 0.4. C° is dense in LP.

Proof for L'. We proved previously that C, is dense in L'; we just need
to prove that C¢° is dense in C.. Given f € C,, there exists r > 0 such
that f = 0 on B(0,7)¢. Given € > 0, since f € C., f is uniformly
continuous means that there exists a > 0 such that |z —y| < a =

€
— P —
@) - 10 < S50 T
and we may make 0 < a < 1.
Consider ¢,:

/cbadaszl and /cba(a:—y)dy:l

e dale) = |_'/ z))ba (@ — )dy’
/’f x)| du(r —y) dy
—L_yl<a|f<> £ bul— ) dy

Thus,

< /\(b(O,T+1)> /|x_y§a¢a(x_y) dy

€
AB(0,r+1))
So we have that

1 * ¢a = flls = " | * Gal) — f(2)] da

- / 1 % 6ale) — f(2)] de
B(0,r+1)

< —)\(B(O,r+1)>\(B(O’T+1)) =

In fact, more is true. We first need a lemma.
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Lemma 0.5. If f € L}*(R"), then
lim [ |f(z+vy)— f(z)| de=0.
y—0 R

Theorem 0.6. Let f € LP(R™) with 1 < p < co. Then
lim || £ * 6, — fl, = 0.

Proof for L*. We have

Jranta) = sy = [ ([ =0 - syt dy) as

N / (/(f(:z: —y) — f())da(y) dx) dy

= [ o) [ =) = 5@ do dy

< / ERCORS / L2l
2 a
<et2|fl, /B L)

— 0 for a sufficiently small.



