MEASURE AND INTEGRATION: LECTURE 20

CONVOLUTIONS

Definition. If f and g are measurable functions on R”, then the con-
volution of f and g, denoted f * g, is defined formally as

(f xg)(x) = A (y)g(z —y) dy.
The operation is commutative and associative:
(f xg)(@) = (g f)(x) and (fxg)*xh=fx(gxh)

Inequalities. Let f be a Lebesgue measurable function on R™. Then
the function f(z) considered as a function of (z,x) in R?" is Lebesgue
measurable since £, X £, C Ls,. The linear transformation given by
(x,y) — (z—y,y) is invertible, and so f(x—y) is a Lebesgue measurable
function of (z,y) € R?". Thus, we see that f(y)g(z — y) is measurable
on R?".

The next theorem asserts that if f and g are in L'(R"™), then f * g
exists a.e. and f x g € L'(R"). Since the product of two integrable
functions need not be integrable, it is not obvious that f % g exists a.e.

Theorem 0.1. Assume f,g € L'(R"). Then for a.e. x € R, the
convolution (f * g)(z) exists, f * g € L*(R"), and

LF* glly < A1 Mgl -

Proof. Assume that f and g are non-negative. Then f(y)g(x —y) is a
non-negative measurable function, and Fubini I implies

/da:/f m—y)dyz/dy/f(y)g(x—y)dw

The LHS equals [(f * g)(z) dz, and the RHS is

/f(y) dy/g(x—y) d:r:/f(y) dy-/g(a:) dz.

Thus || f*gl;, = |[fll; llgll;- When f and g are not necessarily non-
negative, we see that |f| * |g| exists a.e. = |f(y)g(x —y)| integable
= f(y)g(x — y) integrable = f * g exists a.e. Since |f * g| < |f|*|g],
the theorem follows. O
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Young’s theorem. Our next theorem generalizes the previous one.

Theorem 0.2. Let p,q,r € [1,00] such that
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If f € LP(R™) and g € LY(R"), then fx*g exists a.e. and fxg € L"(R™).
Moreover,

1F = gll, < 171, llgll, -

Proof. Without loss of generality, let || f[|, = [lg[|, = 1. The general
case follows from the non-negative case, so assume f, g > 0. Applying
Holder’s inequality,

(f % g)(x) = / (Pl — )77 )P gl — )" dy

= </ fy)rg(z —y)* dy) " < / Fly)a-pnd dy> 1/q
X ( / g(x —y)-umv dy) 1/”'.

We have used the fact that
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Since
(1—]—7>q’=p<1—1>q’=p<1—1> =p,
r p T q
(1—%)p’zqG—1>p’=q(1—1>p’=q,
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Thus, (f *g)" < fP* g%, and so

/(f «g) dr < |7 % g7,

= 171 g1l
_ p q
= [I£1I5 lgllg
= 1.
O
The proof ignores the case in which some of the exponents equal oco.
But, if p = oo, then r = co and ¢ = 1, and the result follows since

|f gl < |Ifllo llglly- If r = oo, then ¢ = p', and the result follows from
Holder’s inequality. However, more is true when r = co.

Theorem 0.3. Let 1 < p < oo and f € LP(R"™). Then the integral
defining (f xg)(x) exists for all x € R™, fxg is bounded and uniformly
continuous, and if 1 < p < oo, then fxg € Cy (i.e., lim, oo (f*g)(x) =
0).
Proof. Either p or p’ must be finite. Suppose p’ < oo. The corollary
to C. dense in LP implies that for all € > 0 there exists § > 0 such
that if [y[ < d, then |[7,g — g|,, < €, where 7 is translation by y. Thus,
|z — 2’| <9, then

HTxg - Tx/g”p/ = HT:cfx’g - ng’ < e
By Holder’s inequality,

[(f * g)(x) = (f * g)(=")] S/!f(y)l l9(z —y) —g(z" —y| dy
= [1rCwllgta+) - o' + )] dy

< ALf 1l I7eg = gl
< [If1l, e

This proves that f * g is uniformly continuous.

Now let 1 < p < 00. Since C, is dense in LP, there exist sequences
fesgr € Co(R™) such that f, — f in L? and g, — ¢ in L. Thus,
fr* gr € Co(R™). Estimating,

[ fr*gx — [ xglloe < I fi* (g1 — 9o + 1 (e — f) * 9l

< | fxll, llgr — gll,, + 1 fx = £l ll9]l,6,
— 0 ask — oo.

Thus, fx * gr converges uniformly to f x g, and so fxg — 0 as
|z — oo. 0



