MEASURE AND INTEGRATION: LECTURE 19

Product spaces in R".

Proposition 0.1. Let R* = R x R™. Let X C R be L£-measurable
and Y C R™ be L™-measurable. Then X xY C R" is L™-measurable,
and A(X xY) = AMX)A(Y).

Proof. It X xY € L", then by Fubini I,

AMX xY) :/ X(xxy) dz :/ XxXy dz

= /m (/RZ Xnydx) dy = A(X)A(Y).

Just NTS X xY € L™
We may assume X and Y have finite measure. Let X = U2 X}, and
Y = U2, Yy, where X = X N B(0,k) and Y, =Y N B(0, k). Then

X xY =X x Y
jik

So if X x Y, € L™, since L" is a g-algebra, then X x Y € L™

Now, given € > 0, there exists K1 C X C G; and Ky C Y C G,
with K; C R? and Ky C R™ compact, G; C R® and G, C R™ open,
such that X(G1\ K;) < e and A" (G5 \ K3) < €. We have K; x K, C R"
is compact, G X Gy C R" is open, and K; x Ko C X xY C G1 X Gbs.

Now

G x G\ K1 x Koy = ((G1 \ K1) X Go) U (K x (G2 \ K3))
C ((G1\ K1) x Go) U (Gy x (G2 \ K3)) .
Thus,
MGy x Gy \ Ky x Ky) = MG\ K)AG2) + MG1)A(G2 \ K3)
< eX(G2) + eX(Gh)
< MI) + )+ e(\(Ky) + )
< €(AX) + AY) + 2¢).
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Hence A\(G; x Gy \ K; x Ks) can be made arbitrarily small. By the
approximation theorem, X x Y is £"-measurable. U

General product spaces. Let (X, Mx, uy) and (Y, My, iy ) be mea-
sure spaces. What is a measure on X X Y? Define Mx x My to be
the smallest o-algebra containing measurable rectangles (i.e., A X B

with A € Mx and B € My)

Proposition 0.2. If E € Mx x My, then E, (the x-section of E at
y) is in Mx forally €Y.

Proof. Let €2 be the class of all E € Mx x My such that £, € Mx
for every y € Y. If E = A x B, then clearly £ € 2. Then  is a
o-algebra: (a) X xY € Q, (b) E € Q, then (E°), = (£,)¢ € Mx since
My is a o-algebra. (c) If E; € , then (U2, E;), = U2, (E;), € Mx
since My is a o-algebra. 0

For R” = R® x R™, it is not true that £" is the product measure

(but it is the completion of the product measure). How do we define

ﬂ’XXY?

Proposition 0.3. If E €¢ Mx x My, then E, € Mx for all y and
A Ey) is a measurable function on'Y .

Define Axxy (E) = [, A(Ey) dpy. If X and Y are o-finite (countable
unions of sets with finite measure), then this also equals [, A(Ex) dpix.

Fubini’s theorem. Let (X, Mx, ux) and (Y, My, uy) be o-finite mea-
sure spaces and f = Mx x My measurable. Then, for each y €Y, f,
is M x-measurable, and for each x € X, f, is My-measurable.

(a) Let 0 < f < o0,

o) = [ fodur. vt = [ 1 dux

Then ¢ is M x-measurable and v is My-measurable, and
[edns= [ £ o) = [ odnr.
b's XxY Y

(b) Let f: XxY —=C. If f € Ll(,uX X [Ly), then fX S Ll(uy)
for a.e. € X and fy € L'(ux) for a.e. y € Y, and the above
holds (¢ € L'(ux) and ¢ € L*(uy)).

If ux and py are complete and use px X py (the completion of
[tx X py, then the only change is fy is M x-measurable for a.e. y and
fx is My-measurable for a.e. x.

Proposition 0.4. Let f: X XY — C is Mx x My -measurable. Then
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(a) for every x € X, f,.: Y — C is My-measurable,
(b) for everyy €Y, f,: X — C is Mx-measurable.

Proof. If V is open, let Q = f~1(V), Q € Mx x My. We have
Q. =1y | foly) eV} = f7YV) € My from earlier. O

Theorem 0.5. Let R* = R’ x R™. Then L™ is the completion of
LY x L™,



