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MEASURE AND INTEGRATION: LECTURE 18 

Fubini’s theorem 

Notation. Let � and m be positive integers, and n = � + m. Write Rn 

as the Cartesian product Rn = R� + Rm . We will write points in Rn as 

z ∈ Rn; x ∈ R�; y ∈ Rm; 

z = (x, y). 

If f is a function on Rn and y ∈ Rm is fixed, then fy is the function on 
R� defined by 

fy (x) = f (x, y). 

The function fy is called the section of f determined by y. In particular, 
if A ⊂ Rn and f = χA, then 

fy (x) =
1 if (x, y) ∈ A; 

0 if (x, y) �∈ A. 

In this case, fy is the characteristic function of a subset of R�, and a 
point x ∈ R� is in this set if and only if (x, y) ∈ A. This set will be 
denoted by 

Ay = {x ∈ R� (x, y) ∈ A},|
and is called the section of A determined by y. 

Now let f be any function on Rn . For a fixed y ∈ Rm, it may be 
that the function fy on R� is integrable. In this case, let 

F (y) = fy (x) dx. 
R� 

Of course, fy must be L­measurable, but there are two ways F (y) could 
exist: (1) fy ≥ 0, in which case 0 ≤ F (y) ≤ ∞, and (2) fy ∈ L1(R�), 
in which case −∞ < F (y) < ∞. 

We eventually want to prove the equation 

F (y) dy = f (z) dz. 
Rm Rn 

To show this, we assume f is L­measurable and integrable, and prove 
that F (y) exists for 
integrable on Rm . 

a.e. y ∈ Rm and that F is L­measurable and 
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2 MEASURE AND INTEGRATION: LECTURE 18 

However, it cannot be expected that fy is an L­measurable function 
for all y ∈ Rm . Indeed, let E ⊂ R� be a non­measurable set, fix 
y0 ∈ Rm, and let A = E × {y0}. Then Ay = ∅ if y = y0 but Ay0 = E. 
The set A is measurable with λ(A) = 0. But Ay0 is not measurable. 

Fubini I: Non­negative functions. 

Theorem 0.1. Assume that f : Rn → [0, ∞] is L­measurable. Then 
for a.e. y ∈ Rm, the function fy : R� → [0, ∞] is L­measurable, and so 

F (y) = fy (x) dx 
R� 

exists. Moreover, F is L­measurable on Rm, and 

F (y) dy = f (x) dz. 
Rm Rn 

The second equation will be abbreviated � �� � � 
f (x, y) dx dy = f (x, y) dx dy, 

Rm R� Rn 

and the LHS of this equation will often be written 

f (x, y) dx dy or dy f (x, y) dx. 
Rm R� Rm R� 

Proof. The proof is long, and is broken into 10 steps. 

(1) Let J be a special rectangle. Then J = J1 × J2, with J1 and J2 

special rectangles in R� and Rm . Then for any y ∈ Rm , 

J1 if y ∈ J2;
Jy = 

if y �∈ J2.∅ 

Thus, λ(Jy ) = λ(J1)χJ2 (y), and so 

λ(Jy ) dy = λ(J1)λ(J2) 
Rm 

= λ(J ). 

(2) Let G ⊂ Rn be open, and write G = Jk , with each Jk ak=1∪∞
disjoint rectangle. Thus, 

∞

Gy = Jk,y 

k=1 



� 

� 

� 

� 

� � 

� 

� � 
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is a disjoint union, and so λ(Gy ) = λ(Jk,y ). Thus, � ∞ � 
λ(Gy ) dy = λ(Jk,y ) dy 

Rm Rm 
k=1 
∞

= λ(Jk ) 
k=1 

= λ(G). 

(3) Let K ⊂ Rn be compact, and choose G ⊃ K open and bounded. 
Apply (2) to G \K: 

λ(Gy \Ky ) dy = λ(G \K); 
Rm 

λ(Gy ) dy − λ(Ky ) dy = λ(G) − λ(K). 
Rm Rm 

Thus, applying (2) to G gives 

λ(Ky ) dy = λ(K). 
Rm 

(4) Let K1 ⊂ K2 ⊂ · · · be compact. Let B = ∪k Kj . Then for all 
y ∈ Rm , 

∞

By = Kj,y . 
j=1 

So By is measurable, λ(By ) = limj → ∞λ(Kj,y ) is increasing, 
so by monotone convergence, 

λ(By ) dy = lim λ(Kj,y ) dy 
Rm Rmj→∞ 

= lim λ(Kj ) by (3) 
j→∞ 

= λ(B). 

(5) Let G1 ⊃ G2 ⊃ · · · be open and bounded. Let C = ∩j Gj and 
let K ⊃ G1. Applying (4), 

∞

K \ C = (K \Gj ), 
j=1 

and so �

λ(Ky \ Cy ) dy = λ(K \ C).


Rm 

Since �

λ(Ky ) dy = λ(K),


Rm 
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4 MEASURE AND INTEGRATION: LECTURE 18 

the result follows for C. 
(6) This step is the most important.	 Let A be bounded and mea­

surable. By the approximation theorem, there exist compact 
sets Kj and bounded open sets Gj such that 

K1 ⊂ K2 ⊂ · · · ⊂ A ⊂ · · · ⊂ G2 ⊂ G1 

and 

lim λ(Kj ) = λ(A) = lim λ(Gj ). 
j→∞	 j→∞ 

Let 
∞	 ∞

B = Kj and C = . 
j=1 j=1 

Then B ⊂ A ⊂ C and λ(B) = λ(A) = λ(C). Thus, by (4) and 
(5), 

(λ(Cy ) − λ(By )) dy = 0, 
Rm 

and so λ(Cy ) − λ(By ) = 0 for a.e. y ∈ Rm . This means that 
Cy \By has measure zero in R� for a.e. y ∈ Rm, and for these y, 
By ⊂ Ay ⊂ Cy ⇒ Ay = By ∪N , where N is a null set. Hence, 
Ay is measurable for a.e. y, λ(Ay ) is a measurable function of 
y, and 

λ(Ay ) dy = λ(By ) dy 
Rm Rm 

= λ(B) = λ(A). 

(7) Observe that if the theorem is valid for each function 0 ≤ f1 ≤
f2 ≤ · · · , then it is valid for f = lim fj . This is due to monotone 
convergence, (2) and (4). Since fj,y is measurable for a.e. y, fy 

is L­measurable for a.e. y, and thus for a.e. y ∈ Rm , 

F (y) = fy (x) dx 
R� 

= lim fj,y (x) dx 
R�j→∞ 

= lim Fj (y). 
j→∞ 
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Since this is an increasing limit and Fj is measurable, so is F , 
and by monotone convergence, 

F (y) dy = lim Fj (y) dy 
Rm j→∞ �Rm 

= lim fj (z) dz 
j→∞� Rn 

= f (z) dz. 
Rn 

(8) Let	 fj be the characteristic function of the bounded set A ∩
B(0, j). Then the theorem is valid for the characteristic func­
tion of any measurable set by (6) the observation in (7). 

(9) Since non­negative measurable simple functions are (finite) lin­
ear combinations of functions in (8), the theorem follows for 
them. 

(10) The theorem follows from the theorem that states that there 
exists a sequence of simple measurable functions converging to 
any non­negative measurable function. 

Fubini II: Integrable functions. 

Theorem 0.2. Assume that f ∈ L1(Rn). Then for a.e. y ∈ Rm, the 
function fy ∈ L1(R�), and 

F (y) = fy (x) dx 
R� 

exists. Moreover, F ∈ L1(Rm), and 

F (y) dy = f (z) dz. 
Rm Rn 

Proof. Write f = f + − f − and apply Fubini I. Define � � 
G(y) = 

R� 

f −y dx, H(y) = 
R� 

f + 
y dx, 

so that � � � � 
G dy = f − dz, H dy = f + dz. 

Rm Rn Rm Rn 

Because the integrals are finite, G(y) < ∞ and H(y) < ∞ a.e. and 
thus fy ∈ L1(R�). Also, F (y) = H(y) − G(y) a.e., and so F ∈ L1(Rm) 



� � � 

� 

� 

� 

|� 
| � 

� � � 
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and 

F dy = H dy − G dy 
Rm �Rm �Rm 

= f + dz − f − dz 
Rn�Rn 

= f dz. 
Rn 

Example of Fubini’s theorem. Let us calculate the integral 

y sin xe−xy dx dy, 
E 

where E = (0, ∞) × (0, 1). Since the integrand is a a continuous func­
tion, it is L­measurable. We have by integration by parts 

∞ 

F (y) = y sin xe−xy dx 
0 
y 

= . 
y2 + 1 

Thus, � 1 1 
F (y) dy = log 2. 

20 

Now, since f (x, y) ≤ ye−xy , we may apply Fubini I to see that 

f (x, y)| dx dy ≤ ye−xy dx dy |
E E� 1 � ∞ 

= dy ye−xy dx 
0 0� 1 

= dy 
0 

= 1. 

Doing integration with respect to y first yields � 1 � � 
sin x 

y sin xe−xy dy =
1 − e−x 

− e−x . 
0 x x 

Thus, Fubini’s theorem shows that 
∞ sin x 11 − e−x 

− e−x dx = log 2. 
0 x x 2 


