MEASURE AND INTEGRATION: LECTURE 18

FUBINI’S THEOREM

Notation. Let £ and m be positive integers, and n = £ +m. Write R"
as the Cartesian product R” = R’ +R™. We will write points in R” as
zeR™ zeRY yeR™

z=(x,y).
If f is a function on R™ and y € R™ is fixed, then f, is the function on
R defined by
fo(@) = f(z,y).
The function f, is called the section of f determined by y. In particular,
if ACR" and f = x4, then

)1 if (z,y) € A
fy($)_{o if (z,y) & A,

In this case, f, is the characteristic function of a subset of R¢, and a
point € R’ is in this set if and only if (x,y) € A. This set will be
denoted by
Ay ={z e R"| (z,y) € A},
and is called the section of A determined by y.
Now let f be any function on R™. For a fixed y € R™, it may be
that the function f, on R’ is integrable. In this case, let

F(o) = [ ffa) du.

Of course, f, must be L-measurable, but there are two ways F'(y) could
exist: (1) f, > 0, in which case 0 < F(y) < oo, and (2) f, € L}(R"),
in which case —oo < F(y) < oo.

We eventually want to prove the equation

| rwa=[ s a

To show this, we assume f is L-measurable and integrable, and prove
that F(y) exists for a.e. y € R™ and that F' is L-measurable and
integrable on R™.
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However, it cannot be expected that f, is an £-measurable function
for all y € R™. Indeed, let E C R’ be a non-measurable set, fix
Yo € R, and let A = E x {yo}. Then A, =0 if y # y, but 4,, = E.
The set A is measurable with A\(A) = 0. But A,, is not measurable.

Fubini I: Non-negative functions.

Theorem 0.1. Assume that f: R™ — [0,00] is L-measurable. Then
for a.e. y € R™, the function f,: R® — [0, 0] is L-measurable, and so

F(y) = e fy(x) dx

exists. Moreover, ' is L-measurable on R™, and

/m F(y) dy = IRnf(%) dz.

The second equation will be abbreviated

/ ( f<x,y>dx) dy= [ fley) do dy.
m RY R®

and the LHS of this equation will often be written

/ f(z,y) de dy or /dy fz,y) du.
m JREL m RY

Proof. The proof is long, and is broken into 10 steps.

(1) Let J be a special rectangle. Then J = J; x Jy, with J; and J;
special rectangles in R and R™. Then for any y € R™,

g Jp ity e Jo;

Thus, A(J,) = A(J1)x,(y), and so
|20 dy =2
= A(J).

2) Let G C R"™ be open, and write G = U2, J,, with each J, a
k=1
disjoint rectangle. Thus,

Gy = iy
k=1
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is a disjoint union, and so A(Gy) = > A(Ji,). Thus,

/R dy—Z/ (Jry) d

i A(Jx
Ve

Let K C R™ be compact, and choose G O K open and bounded.
Apply (2) to G\ K:

| NG \K) dy= NG\ K)

[ NGy dy= [ ME) dy = NG) - )

Thus, applying (2) to G gives

/ ME,) dy = MK).
Rm
Let Ky C Ky C --- be compact. Let B = UK. Then for all

y € R™,
:UK
j=1

So B, is measurable, A\(B,) = lim; — ooA(K,) is increasing,
so by monotone convergence,

/ A(By) dy = lim MNEKy) dy

Jj—00 Rm™

~lim A(K;) by (3
J—00

— \(B).

Let G1 D G2 D --- be open and bounded. Let C' = N;G; and
let K D G4. Applying (4),

K\C=JE\ 6.

and so
)‘(Ky \ Cy) dy = )‘(K \ C)'
]Rm
Since
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the result follows for C.

This step is the most important. Let A be bounded and mea-
surable. By the approximation theorem, there exist compact
sets K; and bounded open sets G; such that

KicKyCc---CAC---CGyCGy

and

lim A(K;) = A(A) = lim \(G}).

Jj—o0 J—0

Let
B = G Kj and C = ﬁ .
j=1 j=1

Then B C A C C and A\(B) = A(A) = A(C). Thus, by (4) and
(5),

and so A(Cy) — A(By) = 0 for a.e. y € R™. This means that
C, \ B, has measure zero in R’ for a.e. y € R™, and for these y,
B, cA,cCy,= A,=B,UN, where N is a null set. Hence,
A, is measurable for a.e. y, A(4,) is a measurable function of
y, and

[ v day= [ )y
— \(B) = A(A).

Observe that if the theorem is valid for each function 0 < f; <
fo <---, then it is valid for f = lim f;. This is due to monotone
convergence, (2) and (4). Since f;, is measurable for a.e. y, f,
is L-measurable for a.e. y, and thus for a.e. y € R™,

F) = [ ta) do

= lim [ f;,(x)de

Jj—oo R?

= lim Fj(y).
j—00
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Since this is an increasing limit and Fj is measurable, so is F,
and by monotone convergence,

/, F(y) dy = lim | Fj(y) dy

j —00 Rm

= lim fi(z) dz

Jj—0o0 Rn
= f(z) d=.
Rn

(8) Let f; be the characteristic function of the bounded set A N
B(0,7). Then the theorem is valid for the characteristic func-
tion of any measurable set by (6) the observation in (7).

(9) Since non-negative measurable simple functions are (finite) lin-
ear combinations of functions in (8), the theorem follows for
them.

(10) The theorem follows from the theorem that states that there
exists a sequence of simple measurable functions converging to
any non-negative measurable function.

l

Fubini II: Integrable functions.

Theorem 0.2. Assume that f € L*(R"). Then for a.e. y € R™, the
function f, € L*(RY), and

F(y) = [ @) do

exists. Moreover, F' € L*(R™), and

/ Fly)dy= [ [(z) d=.
m Rn
Proof. Write f = f* — f~ and apply Fubini I. Define
6= [ 1y v H)= [ g e
R R
so that
/ G dy = fdz, H dy = ftdz.
m Rn R'm Rn

Because the integrals are finite, G(y) < oo and H(y) < oo a.e. and
thus f, € L'(RY). Also, F(y) = H(y) — G(y) a.e., and so F' € L'(R™)
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and

/ F dy = H dy — G dy
= ftdz— f~dz
R R™
= fdz.

R

Example of Fubini’s theorem. Let us calculate the integral

/ ysinze ™ dz dy,
E

where £ = (0,00) x (0, 1). Since the integrand is a a continuous func-
tion, it is L-measurable. We have by integration by parts

F(y) = / ysinxe Y dx
0

Thus,
1 1
/ F(y) dy = = log2.
0 2

Now, since |f(x,y)| < ye ™Y, we may apply Fubini I to see that

/\f(x,y)! dx dyé/yemy dx dy
E E

1 00
:/ dy/ ye " dx
0 0
1
/o
0

1.
Doing integration with respect to y first yields

1 . _
sinx (1 —e"
/ ysinze ™ dy = ( — e"”) )
0 x x

Thus, Fubini’s theorem shows that

< si 1—e™® 1
/ Sy < < e‘”) dr = = log 2.
0 x T 2




