
MEASURE AND INTEGRATION: LECTURE 17


pInclusions between L spaces. Consider Lebesgue measure on the 
aspace (0,∞) ⊂ R. Recall that x is integrable on (0, 1) ⇐⇒ a > −1, 

and it is integrable on (1,∞) ⇐⇒ a < −1. Now let 1 ≤ p < q ≤ ∞. 
pChoose b such that 1/q < b < 1/p. Then x−bχ(0,1) is in L but not in 

p qLq , which shows that L q . On the other hand, x−bχ(1,∞) is in L
but not in Lp, so that Lq 

�⊂ L
p. Thus, in general there is no inclusion �⊂ L

relation between two Lp spaces. 

The limit of �f�p For convenience, define �f�p to be ∞as p → ∞. 
pif f is M­measurable but f �∈ L . 

rTheorem 0.1. Let f ∈ L for some r < ∞. Then 

lim = .�f�∞p→∞ 
�f�p


This justifies the notation for the L∞ norm.


Proof. Let t ∈ [0, �f�∞). By definition, the set 

A = {x ∈ X | |f(x)| ≥ t} 

has positive measure. Observe the trivial inequality �� �1/p 

|f |p dµ�f�p ≥ 
A 

p≥ (t µ(A))1/p 

)1/p= tµ(A . 

If µ(A) is finite, then µ(A)1/p → 1 as p → ∞. If µ(A) = ∞, then 
)1/pµ(A = ∞. In both cases, we have 

lim inf �f�p ≥ t. 
p→∞ 

Since t is arbitrary, 
lim inf .�f�p ≥ �f�∞p→∞ 
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rFor the reverse inequality, we need the assumption that f ∈ L for 
some (finite) r. For r < p < ∞, we have 

1−r/p . r�f�p ≤ �f�
r/p �f�∞ 

Since �f� ,r < ∞

lim sup �f�p ≤ �f�∞ .


p→∞ 

The inequality used in the proof can be written as 

µ({x ∈ X f(x)| ≥ t}) ≤
�f�p 

�p 

,| |
t 

and is known as Chebyshev’s inequality. 

Finite measure spaces. If the measure of the space X is finite, then 
there are inclusion relations between Lp spaces. To exclude trivialities, 
we will assume throughout that 0 < µ(X) < ∞. 

q pTheorem 0.2. If q ≤ p < q < ∞, then L .⊂ L

Proof. Applying Hölder’s inequality to |f |p and 1, 

|f |p dµ = 1 dµ|f |p ·�� �p/q �� �1−p/q 

≤ |f |pq/p dµ dµ �� �p/q 

= |f |q dµ µ(X)1−p/q . 

In particular, if µ(X) = 1, then 

.�f�1 ≤ �f�p ≤ �f�q ≤ �f�∞ 

Counting measure and lp spaces. Let X be any set, M = P(X), 
and µ be the counting measure. Recall that µ(A) is the number of 
points in A if A is finite and equals ∞ otherwise. Integration is simply 

f dµ = f(x) 
X x∈X 

pfor any non­negative function f , and Lp is denoted by l . 

Theorem 0.3. If 1 ≤ p < q ≤ ∞, then lp q , and ⊂ l

1 .�f�∞ ≤ �f�q ≤ �f�p ≤ �f�
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Proof. If q = ∞, then observe that for any x0 ∈ X, � �1/p 

f(x0)| ≤ f(x)|p .|	 |
x∈X 

Now let q < ∞. Then we NTS � �1/q � �1/p 

f(x)|q f(x)|p .| ≤ |
x∈X	 x∈X 

Now multiply both sides by a constant so that the RHS is equal to 1. 
Thus, assuming f(x)|p = 1, we NTS that f(x)|q ≤ 1. But this |
is immediate, since 

|
f(x) ≤ 1 for all x implies that f(x) q f(x)|p| |	 | | ≤ |

�because q > p. 

Thus, in a certain sense, the counting measure and a finite measure 
act in reverse ways for Lp spaces. 

Local LP spaces. Let G be an open set in Rn . The local Lp space on 
G consists of all L­measurable functions f defined a.e. on G such that 
for every compact set K ⊂ G, the characteristic function fχK has a 
finite Lp norm; that is, 

f(x)|p dx < ∞ if 1 ≤ p < ∞;|
K 

f is essentially bounded on K if p = .∞
pThis set is denoted Lloc(G). From our result on finite measure spaces, 

we have at once for 1 ≤ p < q ≤ ∞, 
p 1L∞loc(G) ⊂ Lloc

q (G) ⊂ Lloc(G) ⊂ Lloc(G). 

pConvexity properties of L norm. Let (X,M, µ) be a measure 
space. 

p qTheorem 0.4. Let 1 ≤ p < r < q < ∞ and suppose f ∈ L .∩ L
rThen f ∈ L and 

1 1 1 1 

log �f� r − q 
log �f� + p − r 

log �f� . r ≤	 1 1 p 1 1 q 
p − q p − q 

Proof. Since 1/q < 1/r < 1/p, there exists a unique θ such that 

1 θ 1 − θ 
= + . 

r p q 
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The number θ satisfies 0 < θ < 1 and equals 
1 1 1 1 

q p − 
r

θ = r − 
1 , 1 − θ = 1 1 .1 

p − 
q p − 

q 

We NTS that log �f �r ≤ θ log �f �p + (1 − θ) log �f �q . Note that 

rθ r(1 − θ) 
,1 = + 

p q 

and so p/rθ and q/r(1 − θ) are conjugate exponents. Thus, by Hölder’s 
inequality, 

f θ f 1−θ =�f �r 

=


r 
1/r

f rθ f r(1−θ) 
1 �1/r 

f rθ f r(1−θ)≤ 
p/rθ q/r(1−θ) �1/r

rθ r(1−θ)�f �p �f �q = 

θ 1−θ = �f �p �f �q . 

The theorem states that if f is an M­measurable non­zero function 
on X, then the set of indices p such that f ∈ Lp is an interval I ⊂ [1, ∞], 
and log �f �p is a convex function of 1/p on I. 


