MEASURE AND INTEGRATION: LECTURE 17

Inclusions between LP spaces. Consider Lebesgue measure on the
space (0,00) C R. Recall that z* is integrable on (0,1) <= a > —1,
and it is integrable on (1,00) <= a < —1. Now let 1 < p < ¢ < 0.
Choose b such that 1/¢ < b < 1/p. Then 7 "x (1) is in L? but not in
L4, which shows that LP ¢ L9. On the other hand, 271 ) is in L?
but not in LP, so that LY ¢ LP. Thus, in general there is no inclusion
relation between two LP spaces.

The limit of [|f||, as p — co. For convenience, define || f[|, to be oo

if fis M-measurable but f & L.
Theorem 0.1. Let f € L™ for some r < oco. Then
i [1£], = /).
This justifies the notation for the L*° norm.
Proof. Let t € [0, || f]|.)- By definition, the set
A={re X | |f(z) =t}

has positive measure. Observe the trivial inequality

1/p
T ( [ du)

> (P pu(A)?
= tu(A)\P.

If ;1(A) is finite, then p(A)Y? — 1 as p — oo. If u(A) = oo, then
((A)YP = 0o. In both cases, we have

liminf || f[|, > ¢.
p—o0

Since t is arbitrary,
lm i [, > ...
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For the reverse inequality, we need the assumption that f € L" for
some (finite) r. For r < p < 0o, we have

r 1—r
1L, < AT NI

Since || f||, < oo,
limsup || f], < [Ifll, -

p—00

The inequality used in the proof can be written as

e e X | [f@)] > 1) < (”f ”p) |

t

and is known as Chebyshev’s inequality.

Finite measure spaces. If the measure of the space X is finite, then
there are inclusion relations between LP spaces. To exclude trivialities,
we will assume throughout that 0 < u(X) < oc.

Theorem 0.2. [fqg <p < q < oo, then LY C LP.

Proof. Applying Holder’s inequality to |f|” and 1,

J1sv du= [1a7-1au
(o) ()
= (furr )" ey

In particular, if (X)) = 1, then
11 < (A1, < f1g < N1l -

Counting measure and [? spaces. Let X be any set, M = P(X),
and g be the counting measure. Recall that p(A) is the number of
points in A if A is finite and equals oo otherwise. Integration is simply

/Xf an =" f(x)

rzeX
for any non-negative function f, and LP is denoted by [”.

Theorem 0.3. If1 <p < q < oo, then P C 19, and
1l < A1, < WA, < NI -
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Proof. If ¢ = 0o, then observe that for any xzq € X,

1/p
!ﬂmﬂs<§jvmw> :

zeX

Now let ¢ < oo. Then we NTS

(Z If(a:>|q) " < (Z |f(x)|p> 1/1,'

rzeX zeX

Now multiply both sides by a constant so that the RHS is equal to 1.
Thus, assuming > |f(z)[" = 1, we NTS that > |f(x)|? < 1. But this
is immediate, since |f(z)| < 1 for all z implies that |f(z)|? < |f(z)[
because ¢ > p. U

Thus, in a certain sense, the counting measure and a finite measure
act in reverse ways for LP spaces.

Local LY spaces. Let G be an open set in R™. The local LP space on
G consists of all L-measurable functions f defined a.e. on G such that
for every compact set K C G, the characteristic function fyx has a
finite LP norm; that is,

/ |f(x)]” de <oo if1<p<oc;
K
f is essentially bounded on K if p = o0.

This set is denoted L} (G). From our result on finite measure spaces,
we have at once for 1 < p < ¢ < o0,

X (G)c Ll (G)cLP (G)cC LL.(G).

loc loc loc

Convexity properties of L” norm. Let (X, M,u) be a measure
space.

Theorem 0.4. Let 1 < p < r < q < oo and suppose f € LP N LA.
Then f € L" and

1_1 1_1
log [If1l, < 4—=% log | fll, + — log I/,
p q p q

Proof. Since 1/q < 1/r < 1/p, there exists a unique 6 such that
1 0 1-0

r.p q
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The number 6 satisfies 0 < # < 1 and equals

1_1 1_1
0=1—1, 1-0=7—7.
P q Poa
We NTS that log || f||, < @log | f][, + (1 — 6)log | f||,- Note that
1:&-’_@7
p q

and so p/rf and ¢/r(1—0) are conjugate exponents. Thus, by Holder’s
inequality,

170 = ],
= [l

_ 1/r
< (1771 177l 1)

0 r(1—6 1/r
= (715 071,

0 1-0
= 1 LIl
O
The theorem states that if f is an M-measurable non-zero function

on X, then the set of indices p such that f € L is an interval I C [1, 00,
and log || f]|, is a convex function of 1/p on I.



