MEASURE AND INTEGRATION: LECTURE 15

L? spaces. Let 0 < p < oo and let f: X — C be a measurable
function. We define the LP norm to be

1/p
11l = ( [ du) |

and the space LP to be
LP(p) = {f: X — C| f is measurable and |||, < oo}.

Observe that || f]|, = 0 if and only if f = 0 a.e. Thus, if we make
the equivalence relation f ~ g <= f = g a.e, then |[|-|| makes L” a
normed space (we will define this later).

If 14 is the counting measure on a countable set X, then

/Xf an =" f(x).

zeX

Then L? is usually denoted P, the set of sequences s, such that

0o 1/p
(Z |sn|p> < oo.

n=1
A function f is essentially bounded if there exists 0 < M < oo such
that |f(x)] < M for a.e. x € X. The space L™ is defined as

L*(u) ={f: X — C| f essentially bounded}
with the L*° norm
I fll. =nf{M | |f(z)] < M ae. ze X}
Proposition 0.1. If f € L, then |f(z)| < ||fl|l, a-e.

Proof. By definition of inf, there exists M), — || f||, such that |f(z)| <
M, a.e, or, equivalently, there exists Ny with p(N;) = 0 such that
|f(z)| < My for all x € Ni. Let N = U2 N, Then u(N) = 0. If
r € N° = N2 (Ny)e, then |f(x)| < My since My, — ||f|. Thus,
|f(@)] < |If]l,, for all x € N°. O
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Theorem 0.2. Let 1 <p<oo and 1/p+1/qg=1. Let f € L(u) and
g € LY(u). Then fg € L*(n) and

1Fglly < Wf1, gl dee

[uslau< (] rf|p)1/p (/ \g\q)l/q

Proof. If 1 < p < o0, this is simply Holder’s inequality. If p = 1,
4 = oo, then | f(2)g(2)] < llgll. |7(x)] a.c. Thus,

[ 1731 <1l / 7l
]

Theorem 0.3. Let 1 <p <oo. Let f,g € LP(u). Then f+ g € LP(u)
and ||f +gll, < [If[l, + llgll,-

Proof. If 1 < p < o0, this is simply Minkowski’s inequality. If p = 1,
then [|f+g| < [|fl+ [lg] is true. If p = oo, then |f +g|] < |f| +
gl = I + 9llee < 1l + M9l - O

Normed space and Banach spaces. A normed space is a vector
space V' together with a function [|-|| : V' — R such that

(a) 0 < lz]| < oco.

(b) ||lz|| =0 <= x=0.

(¢) |laz|| = |af||z| for all a € C.

(d) llz+yll < [lzll + llyll-
For example, LP(u) is a normed space if two functions f, g are consid-
ered equal if and only if f = g a.e. Also, R” with the Euclidean norm
is a normed space.

A metric space is a set M together with a function d: M x M — R

such that

(a) 0 d(fc,y)
(b) d(z, )
(c) (Jay)>01fflf7éy
(d) d(z,y) = d(y,z).
(e) d(z,y) < d(z,2) + d(z,y).

A normed space is a metric space with metric d(f, g) = ||f — g||-

Recall that x; — € M if lim,,_, d(z,,2) = 0. A sequence {z;} is
Cauchy if for every € > 0 there exists N(e) such that d(z;,z)) < € for
all 5,k > N(e).

Claim: if x,, — z, then it is Cauchy. We know that lim,, ... d(x,,x) =
0, so given € > 0, there exists N such that d(xy, z) < ¢/2 for all &k > N.
for j,k > N, d(zg, z;) < d(z;,x) + d(z,z) < e
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However, a Cauchy sequence does not have to converge. For example,
consider the space R\ {0} (the punctured real line) with the absolute
value norm. The sequence z,, = 1/n is Cauchy but it does not converge
to a point in the space.

A metric space is called complete if every Cauchy sequence converges.
By the Bolzano-Weierstrass theorem, R" is complete. (Every Cauchy
sequence is bounded, so it has a convergent subsequence and must
converge.)

A normed space (V, ||-||) that is complete under the induced metric
d(f,g) = |If — gl is called a Banach space.

Riesz-Fischer theorem.

Lemma 0.4. If {f,} is Cauchy, then there exists a subsequence f,,
such that d(fu,,,, fn,) < 27

Theorem 0.5. For 1 < p < oo and for any measure space (X, M, ),
the space LP (1) is a Banach space.

Proof. Let 1 < p < oo and let {f,} € LP(u) be a Cauchy sequence.
By the lemma, there exists a subsequence n, with ny < ny < ---

such that ank+1,fnka < 27% Let g = Zle Hfm+1 — [ , and g =
My oo g = D ooy ||fniJrl = fu||,- By Minkowski’s inequality,

k
, < d o<l
=1

k
Hngp < Z Hf’ni+1 - fm
i=1

Consider ¢;. By Fatou’s lemma,
/ liminf g) < liminf / ars

/gp§1:>g(x)<ooa.e.

and so

Thus, the series
i=1

converges absolutely a.e. Define

fla) = {fm(x) + > (fais (@) = fr,(x))  where it converges;

0 otherwise.
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The partial sum

k—1
fon (@ +Z fnz+1 — fui(2)) = fnk(m)v
=1

and so
T f,, () = f(z) ae

Thus we have shown that every Cauchy sequence has a convergent
subsequence, and we NTS that f,, — f in LP.

Given € > 0, there exists N such that [|f, — fi|, < € for all n,m >
N. We have that

|f - fm|p = hmlnf |fnk - fm|p

since f,, — f a.e. Thus,

J 18 = tal = [ tminf £y, = 1

< hminf/ |fnk - fmlp
b
< €.
This implies that || f — fu||, <€, and thus

Ifll, = IIf = fa + f+mll, <|If = faull, + 1 fnll, < 00

We conclude that f € LP and | f — full, — 0 as m — oc.
Now let p = oo and let {f,} be a Cauchy sequence in L>(u). Let

A=Az [ [fe(@)] > [ fell o }
and
B =A{ | |fa(®) = fin(@)] > | fo = fullo}-

These sets all have measure zero. Let

(U)o (9

Then N has measure zero.

For x € N¢, f, is a Cauchy sequence of complex numbers. Thus,
fn — f by completeness of C uniformly. Since ||fz||,, is bounded,
|fx(x)] < M for all x € N°. Thus, f(z) < M for all z € N°¢. Letting
f=0on N, we have ||f||, <ooand|f,— fll, = 0asn—o00. O

Theorem 0.6. Let 1 < p < 0o and {f,} be a Cauchy sequence in LP(u)
such that || f — fall, = 0. Then f, has a subsequence which converges
pointwise almost everywhere to f(x).
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Proof. Since |[f — full, — 0, f, — [ in measure. By the previous
theorem, there exists a subsequence which converges a.e. O

Examples in R.

(1) A sequence in L” can converge a.e. without converging in L”.
Let fk = kQX(O,l/k)- Then

1/p
| fill, = (/ kQ”) — B2/ = k2P < oo
(0,1/k)

Thus fy, € L? and f;, — 0 on R, but [| x|, — oo.

(2) A sequence can converge in LP without converging a.e. (HW
problem).

(3) A sequence can belong to LP* N LP? and converge in L' without
converging in L2, Let fy = k™ x(x2r). Then f;, — 0 pointwise
and || fill, = k7'kVP = EVPTL O 0f p > 1, then |[fi]l, — 0 as
k — oo, so fr — 0in L? norm. But || f¢|l, = 1 so fr /4 0in L'



