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MEASURE AND INTEGRATION: LECTURE 15 

Lp spaces. Let 0 < p < ∞ and let f : X C be a measurable →
function. We define the Lp norm to be �� �1/p 

�f �p = |f |p dµ , 
X 

and the space Lp to be 

Lp(µ) = {f : X → C f is measurable and �f �p| < ∞}. 

Observe that �f �p = 0 if and only if f = 0 a.e. Thus, if we make 
the equivalence relation f ∼ g ⇐⇒ f = g a.e, then �·� makes Lp a 
normed space (we will define this later). 

If µ is the counting measure on a countable set X, then 

f dµ = f (x). 
X x∈X 

Then Lp is usually denoted �p, the set of sequences sn such that � �1/p∞

< ∞.|sn|p 

n=1 

A function f is essentially bounded if there exists 0 ≤ M < ∞ such 
that f (x) ≤ M for a.e. x ∈ X. The space L∞ is defined as | |


L∞(µ) = {f : X → C f essentially bounded}
| 
with the L∞ norm 

= inf{M f (x) ≤ M a.e. x ∈ X}.�f �∞ | | | 

Proposition 0.1. If f ∈ L∞, then f (x) a.e.| | ≤ �f �∞ 

Proof. By definition of inf, there exists Mk → �f �∞ such that f (x) <| |
Mk a.e, or, equivalently, there exists Nk with µ(Nk ) = 0 such that 
f (x)| ≤ Mk for all x ∈ Nk

c . Let N = ∪∞ Nk . Then µ(N ) = 0. If k=1

x ∈ N c = k=1(Nk )
c, then f (x)| ≤ Mk since Mk . Thus, 

|
∩∞ | → �f �∞

�f (x)| ≤ �f �∞ for all x ∈ N c .|
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2 MEASURE AND INTEGRATION: LECTURE 15 

Theorem 0.2. Let 1 ≤ p ≤ ∞ and 1/p + 1/q = 1. Let f ∈ Lp(µ) and 
g ∈ Lq (µ). Then fg ∈ L1(µ) and 

�fg� i.e.,p �g�q1 ≤ �f�� �� �1/p �� �1/q 

|f |pfg| dµ ≤ g .| | |q 

Proof. If 1 < p < ∞, this is simply Hölder’s inequality. If p = 1, 
q = ∞, then f(x)g(x) f(x) a.e. Thus, | | ≤ �g�∞ | | � 

f .|fg| ≤ �g� | |

Theorem 0.3. Let 1 ≤ p ≤ ∞. Let f, g ∈ Lp(µ). Then f + g ∈ Lp(µ) 
and �f + g� . p + �g�pp ≤ �f�
Proof. If 1 < p < ∞, this is simply Minkowski’s inequality. If p = 1, 
then f + g| ≤ f + g is true. If p = ∞, then f + g f + 
| | ⇒ �

|
f + g�∞ ≤ �

|
f�
|
∞ + 

|
�g
|
�∞

| | ≤ | |
�g . 

Normed space and Banach spaces. A normed space is a vector 
space V together with a function �·� : V R such that →

(a) 0 ≤ � .x� < ∞
(b) �x� = 0 x = 0. ⇐⇒
(c) �αx� = α x� for all α ∈ C. 
(d) � .x�+ �y�x + y� ≤ �

For example, Lp(µ) is a normed space if two functions f, g are consid­
ered equal if and only if f = g a.e. Also, Rn with the Euclidean norm 
is a normed space. 

A metric space is a set M together with a function d : M ×M R→
such that 

(a) 0 ≤ d(x, y) < ∞. 
(b) d(x, x) = 0. 
(c) d(x, y) > 0 if x = y. 
(d) d(x, y) = d(y, x). 
(e) d(x, y) ≤ d(x, z) + d(z, y). 

A normed space is a metric space with metric d(f, g) = �f − g�. 
Recall that xi → x ∈ M if limn→∞ d(xn, x) = 0. A sequence {xi} is 

Cauchy if for every � > 0 there exists N(�) such that d(xj , xk ) ≤ � for 
all j, k ≥ N(�). 

Claim: if xn → x, then it is Cauchy. We know that limn→∞ d(xn, x) = 
0, so given � > 0, there exists N such that d(xk , x) < �/2 for all k > N . 
for j, k > N , d(xk , xj ) ≤ d(xj , x) + d(x, xk ) < �. 
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However, a Cauchy sequence does not have to converge. For example, 
consider the space R \ {0} (the punctured real line) with the absolute 
value norm. The sequence xn = 1/n is Cauchy but it does not converge 
to a point in the space. 

A metric space is called complete if every Cauchy sequence converges. 
By the Bolzano­Weierstrass theorem, Rn is complete. (Every Cauchy 
sequence is bounded, so it has a convergent subsequence and must 
converge.) 

A normed space (V, �·�) that is complete under the induced metric 
d(f, g) = �f − g� is called a Banach space. 

Riesz­Fischer theorem. 

Lemma 0.4. If {fn} is Cauchy, then there exists a subsequence fnk 

such that d(f , fnk ) ≤ 2−k .nk+1 

Theorem 0.5. For 1 ≤ p ≤ ∞ and for any measure space (X,M, µ), 
the space Lp(µ) is a Banach space. 

Proof. Let 1 ≤ p < ∞ and let {fn} ∈ Lp(µ) be a Cauchy sequence. 
By the lemma, there exists subsequence with < na n nk 1 2 ��

< · · · 
, fnk 

�k< 2−ksuch that fnk+1 Let gk fni+1 − f and g =
=. nii=1p p 
∞
i=1limk→∞ gk fni+1 − f By Minkowski’s inequality, 

k

= .ni p 

k

<
 2−ifni+1 − f < 1.�gk �p ≤ ni p 
i=1 i=1 

pConsider gk . By Fatou’s lemma, 

p plim inf gk ≤ lim inf gk , 

and so 

gp ≤ 1 ⇒ g(x) < ∞ a.e. 

Thus, the series 
∞

fn1 (x) + (fni+1 (x) − fni (x)) 
i=1 

converges absolutely a.e. Define 

∞
i=1(ffn1 (x) + ni+1 (x) − fni (x)) where it converges; 

f(x) = 
0 otherwise.
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The partial sum 
k−1

fn1 (x) + (fni+1 (x) − fni (x)) = fnk (x), 
i=1 

and so 
lim fnk (x) = f(x) a.e. 
k→∞ 

Thus we have shown that every Cauchy sequence has a convergent 
psubsequence, and we NTS that f f in L .nk →

Given � > 0, there exists N such that �fn − fm�p < � for all n,m > 
N . We have that 

|pf − fm
p = lim inf fnk − fm| | |

since fnk f a.e. Thus, → � � 
f − fm

p = lim inf fnk − fm
p 

X X 

≤ lim inf fnk − fm
p| |

X 
p

This implies that �f − f < �, and thus pm�

�f�p = �f − fm + f + m p + �fm�p < ∞.�p ≤ �f − fm�

We conclude that f ∈ Lp and �f − f 0 as m →∞.m�p →
Now let p = ∞ and let {fn} be a Cauchy sequence in L∞(µ). Let 

Ak = {x fk(x)|| | > �fk �∞} 

and 
Bm,n = {x fn(x) − fm(x) > �fn − fm�∞}.| | |

These sets all have measure zero. Let 

 

∞ ∞

N = Ak ∪ Bm,n . 
k=1 n,m=1 

Then N has measure zero. 
For x ∈ N c , fn is a Cauchy sequence of complex numbers. Thus, 

fn → f by completeness of C uniformly. Since �f is bounded, k �∞ 
cfk (x) < M for all x ∈ N . Thus, f(x) < M for all x ∈ N . Letting| | c 

f = 0 on N , we have �f�∞ < ∞ and �f 0 as n →∞. �n − f�∞ →

Theorem 0.6. Let 1 ≤ p ≤ ∞ and {fn} be a Cauchy sequence in Lp(µ) 
such that �f − f 0. Then fn has a subsequence which converges n�p →
pointwise almost everywhere to f(x). 



5 MEASURE AND INTEGRATION: LECTURE 15 

Proof. Since �f − fn� → 0, fn → f in measure. By the previous p 
theorem, there exists a subsequence which converges a.e. � 

Examples in R. 
(1) A sequence in Lp can converge a.e. without converging in Lp. 

Let fk = k2χ(0,1/k). Then �� �1/p 

�fk �p = k2p = k2(1/k)1/p = k2−1/p < ∞. 
(0,1/k) 

Thus fk ∈ Lp and fk → 0 on R, but �fk � . p →∞
(2) A sequence can converge in	 Lp without converging a.e. (HW 

problem). 
(3) A sequence can belong to Lp1 ∩Lp2 and converge in Lp1 without 

converging in Lp2 . Let fk = k−1χ(k,2k). Then fk → 0 pointwise 
and �fk � = k−1k1/p = k1/p−1 . If p > 1, then �fk � 0 as p	 p → 
k →∞, so fk → 0 in Lp norm. But �fk � = 1 so fk �→ 0 in L1 .1 


