MEASURE AND INTEGRATION: LECTURE 14

Convex functions. Let ¢: (a,b) — R, where —oc0 < a < b < o0.
Then ¢ is convez if o((1 —t)x + ty) < (1 — t)e(x) + te(y) for all
x,y € (a,b) and t € [0,1]. Looking at the graph of ¢, this means that
(t,(t)) lies below the line segment connecting (x, ¢(x)) and (y, ¢(y))
forz <t<uy.

Convexity is equivalent to the following. For a < s <t < u < b,

o) = pls) _ olw) = o(t)
t—s - u—1t

If ¢ is differentiable, then ¢ is convex on (a, b) if and only if, for a <
s<t<b @(s) <P(t). If g is C? (continuously twice differentiable),
then ¢’ increasing = ¢"” > 0.

Theorem 0.1. If ¢ is convex on (a,b), then ¢ is continuous on (a,b).

Jensen’s inequality. Let (€2, M, ) be a measure space such that
u(2) =1 (i.e., p is a probability measure). Let f: Q@ — R and f €
LY(p). fa < f(x) < b for all z € Q and ¢ is convex on (a,b), then

@(/Qfdu> S/Q(swf)du-

Proof. Let t = [, f dp. Since a < f < b,

o=a- (@) < [ fdu<bop@ =0,
Q
so a <t < b. Conversely,

ot) = pls) _ wlw) = o(t)
t—s - u—1t

Fix t, and let
t _
B= sup PH—¥06)
a<s<t t—S

Then p(t) — ¢(s) < B(t — s) for s < t. We have

p(u) — ¢(t)

B <
- u—t
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for any u € (t,b), so B(u —t) < p(u) — ¢(t) for u > t. Thus p(s) >
o(t)+ B(s —t) for any a < s < b. Let s = f(x) for any 2 € Q. Then

p(f(x)) —(t) = B(f(z) =1) = 0

for all x € Q.
Now ¢ convex = ¢ continuous, so ¢ o f is measurable. Thus, inte-
grating with respect to pu,

/X(sOOf)dM—/XsO(t) dM—B/deMZO,

and the inequality follows. 0

Examples.

(1) Let ¢(x) = €” be a convex function. Then

em(LfW)SdeM

(2) Let Q = {p1,...,p,} beafinite set of points and define p({p;})
1/n. Then u(Q2) = 1. Let f: Q — R with f(p;) = ;. Then

[ 5= foontin)

1

Let y; = e*. Then

—_

(4 )" < (g ya),

n
which is the inequality between arithmetic and geometric means.
We also could take pu({p;}) = o, >0 and >, o; = 1. Then

al , Q2

ylye® eyt < aqyn + aoys + A Qpln.
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Holder’s and Minkowski’s inequalities. We define numbers p and
q to be conjugate exponentsif 1/p+ 1/q = 1. The conjugate exponent
of 1 is co. Conjugate exponents are the same if and only if p = ¢ = 2.

Theorem 0.2. Let p and q be conjugate exponents with 1 < p < o0.
Let (X, M, u) be a measure space and f,g: X — [0,00] measurable
functions. Then

1/p 1/q
/ fgdu < (/ 1P du) (/ g? du) (Holder’s)
X
an
1/ 1/ 1/
</ (f+9)pdﬂ> ’ < (/ fP du) p—i— (/ g’ du) ’ (Minkowski’s).
X X X

Proof. Holder’s. Without loss of generality we may assume that [ < fr=
land [, g? = 1. Indeed, if [ f? # 0 and [ g # 0, then let
T S
1/p’ B 1/p°
eI (™
(Otherwise, if [ f? =0, then f? = 0 a.e., and both sides of the inequal-
ity are equal to zero.) We claim that
1 1
(0.1) ab < =a? + =b? for all a,b € [0, oc].
p q

It is easy to check if a or b equals 0 or co. Assume 0 < a < oo and
0 < b < oo, and write @ = e%/? and b = €'/? for some s,t € R. Let
Q = {z1, 22}, p(z1) = 1/p, and p(x2) = 1/g. We have

eXp/fdué/efdu,
Q Q

where f(z1) = s and f(x9) =t. Thus,

(s t> 1, 1,
exp|—+-| < -e"+ —¢€,
p q p q

f=

o (0.1) follows. Thus,

1 1 1 1
/(fg)dué—/apdu+—/quu__+__1‘
X b Jx q.Jx p q

Minkowski’s. Observe that
(f+9)P=f(f+gP  +g(f+9"!



4 MEASURE AND INTEGRATION: LECTURE 14

Since p and ¢ are conjugate exponents, ¢ = p/(p — 1). Thus,

/f(f +g)t < (/ fp> " (/(f + g)<p—1>p/<p—1>)(p1)/p
-(/7) N ([ir+ar) i
Similarly,

[itrar< ([ r) " (fur+ar) o

Let Q = {x1, 22}, p(x1) = 1/2 = p(x3), and ¢ = t?. Then

(/fdu) _/prdu,
a+b alP  bP
( 2 ) ORI

21p (f+9)P <3 /f” /g < oo.

Since 1 — (p—1)/p = 1/p,

(/)((fntg)”du)l/p < (/X fr du) 1/p+ (/X q° du) l/p-

SO

Thus,



