
� 

� � 

MEASURE AND INTEGRATION: LECTURE 13


Egoroff ’s theorem (pointwise convergence is nearly uniform. 

Theorem 0.1. Suppose µ(X) < ∞. Let fn : X C be a sequence of →
measurable functions such that fn f a.e. For all � > 0, there exists →
a measurable subset E ⊂ X with µ(X \ E) < � and such that fn f→
uniformly on E. 

Proof. Let 

S(n, k) = {x | |fi(x) − fj (x) < 1/k}.|
i,j>n

Clearly, S(n, k) is measurable, since it is the countable intersection of 
measurable sets. Note that 

S(n, k) = {· · · } ∩ {· · · } 
i,j>n+1 i=n,j>n+1

= S(n + 1, k) ∩ {stuff}. 

Thus, S(n, k) ⊂ S(n + 1, k), that is, for each k, we have an ascending 
sequence of sets. Claim: for each k, X = ∪∞ S(n, k). Given k,n=1

and x ∈ X, we know fi(x) → f(x). Thus there exists N such that 
fi(x) − fj (x) < 1/k for all i, j > N since any convergent sequence is | |
Cauchy. Thus, x ∈ S(N, k). Obviously 

 

∞ ∞

S(N, k) ⇒ X = S(n, k)X ⊃ 
n=1 n=1 

for each k. So we have 

lim µ(S(n, k)) → µ(X) 
n→∞ 

for any k. 
For each k = 1, 2, . . ., choose nk so that 

µ(S(nk , k) − µ(X) < �/2k .| | 
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2 MEASURE AND INTEGRATION: LECTURE 13 

(Recall µ(X) < ∞.) Let E = S(nk , k). Then X \ E = k=1(X \k=1 ∪∞
S(nk , k)). Thus, 

∩∞

∞

µ(X \ E) ≤ µ(X \ S(nk , k)) 
k=1 
∞

= µ(X) − µ(S(nk, k)) 
k=1 
∞

µ(X) − µ(S(nk , k))≤ | |
k=1 
∞

< �/2k = �. 
k=1 

Claim: fn → f uniformly on E; that is, given any δ > 0, there 
exists N such that fi(x) − fj (x) < δ for all i, j > N and every| |

E. Choose k such that 1/k < δ. If x ∈ S(n, k), by defi­x ∈
nition Fi(x) − fj (x) < δ for all i, j > n. In particular, for x ∈| |
S(nk , k), fi(x) − fj (x) < δ for all i, j > nk . But S(nk, k) ⊃ E, so |
|fi(x) − fj

|
(x) < δ for all i, j > nk and all x ∈ E. �| 

The theorem is not necessarily true if µ(X) = ∞. For example, if µ 
is Lebesgue measure on R and fn = χ[n,n+1]. Then fn → 0 pointwise, 
but for any n = m, fn(x) − fm(x) = 1 on a set of measure 2. 

Convergence in measure. Here is an example. Let fn : X R and� →
0. Then if � > 0,

X |fn| → � 
intX |fn| ≥ 

{x | fn>�} 
|fn| > �µ({x | fn(x) > �}). 

< �2So, given � > 0, choose N such that for all n > N , 
X |fn . Then|

� ≥ µ({x fn(x) > �} for all n > N .|
We say that fn → f in measure if given � > 0 there exists N such 

that, for all n ≥ N , µ({x f(x) − fn(x) > �}) < �.| | | 

Convergence almost everywhere implies convergence in mea­
sure. 

Theorem 0.2. If fn → f a.e. and µ(X) < ∞, then fn f is→ 
measure. 

Proof. Let A = fn(x) → f(x)}. Then µ(X \ A) = 0. Since{x |
µ(X) < ∞, µ(A) < ∞ and we may apply Egoroff’s theorem. Thus, 
there exists a set E such that µ(A \ E) < � and fn → f uniformly on 
E. Given � > 0, there exists N such that f(x) − fn(x) < � for all | | 



� � � � 
� �
 � �


� 

� 

�


3 MEASURE AND INTEGRATION: LECTURE 13 

n > N and all x ∈ E. So, for n > N , f(x) − fn(x) can be greater | |
than � only on (A \ E) ∪ (X \ A). This means that 

µ({x fn(x) − f(x) > �}) ≤ µ(A \ E) + µ(X \ A)| | | 
< � + 0 = � 

for all n > N . � 

However, if fn f in measure, then it is not true that fn f a.e.→ � 1 
→

For example, fn : [0, 1] → [0, 1] such that limn→∞ fn(x) dx = 0 but 
0 

fn(x) → 0 for no x. 

Convergence in measure implies some subsequence conver­
gence almost everywhere. 

Theorem 0.3. If fn → f in measure, then fn has a subsequence fnk 

such that limk→∞ f = f a.e.nk 

Proof. Let � = 2−k Given k, there exists N(k) such that for n ≥ N(k), 
µ({x f(x) − fn(x) > 2−k } < 2−k . Let E| | |
2−k Then µ(Ek ) < 2−k If x �∈ ∪∞

. 
fN (k)(x) − f(x) >
= {x | 

i, then x ∈ (∪∞
k 

Ei)
c = ∩∞ EE}. 

Then 
. i .i=k i=k i=k 

< 2−ifN (i)(x) − f(x) for every i ≥ k 

⇒ fN (i)(x) → f(x). 

Let 
∞

A = Ei. 
k=1 i=k 

So if x �∈ A, then fN (i)(x f(x). For any k,) → 



∞

∞

µ(A) ≤ µ (∪∞ Ei) ≤ 2−i = 2−k+1 ,i=k 

i=k 

so µ(A) = 0. � 

Dominated convergence theorem holds for convergence in mea­
sure. We know that dominated convergence and monotone conver­
gence still hold if we replace convergence with convergence almost ev­
erywhere. Now we show that the theorems are valid if we replace 
convergence by convergence in measure. 

Theorem 0.4. Let fn : X C be a sequence of measurable functions →
defined a.e. Suppose fn → f in measure and |fn| ≤ |g| a.e. with 

Theng ∈ L1(µ). 

f dµ = lim fn dµ. 
X n→∞ 

c 
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Note that the pointwise limit of fn may not exist. 

Proof. Take any subsequence fnk . Clearly, fnk f in measure. There →
exists a subsequence f(nk )� such that f(nk )� → f pointwise a.e. Apply 
dominated convergence to this subsequence. Then 

f dµ = lim f(nk )� dµ. 
X X�→∞ 

Lemma 0.5. Let an be a sequence. If every subsequence has a subse­
quence which converges to α, then limn→∞ an = α. 


