MEASURE AND INTEGRATION: LECTURE 13

Egoroff’s theorem (pointwise convergence is nearly uniform.

Theorem 0.1. Suppose u(X) < oo. Let f,: X — C be a sequence of
measurable functions such that f, — [ a.e. For all € > 0, there exists
a measurable subset E C X with (X \ E) < € and such that f, — f
uniformly on E.

Proof. Let
Stn )= (V4o | 1Ale) = ()] < 1/}

Clearly, S(n, k) is measurable, since it is the countable intersection of
measurable sets. Note that

S(n, k) = ﬂ {--}n ﬂ {--}

2,5 >n+1 i=n,j>n+1

= S(n+1,k) N {stuff}.

Thus, S(n,k) C S(n+ 1,k), that is, for each k, we have an ascending
sequence of sets. Claim: for each k, X = UX ,S(n,k). Given k,
and x € X, we know f;(x) — f(x). Thus there exists N such that
|fi(x) — f;(z)| < 1/k for all 4,57 > N since any convergent sequence is
Cauchy. Thus, x € S(N, k). Obviously

X5 OS(N,k);»X: DS(n,k)

n=1 n=1

for each k. So we have

lim pu(S(n, k)) — p(X)

n—oo

for any k.
For each £ =1,2,..., choose nj so that

|1(S(ng, k) — u(X)| < e/2F.

Date: October 16, 2003.



2 MEASURE AND INTEGRATION: LECTURE 13

(Recall u(X) < 00.) Let E =N, S(ng, k). Then X \ B = U (X \
S(nk, k)). Thus,

Claim: f, — f uniformly on E; that is, given any J > 0, there
exists N such that |fi(z) — fj(z)] < ¢ for all 4,7 > N and every
x € E. Choose k such that 1/k < 6. If z € S(n,k), by defi-
nition |Fj(x) — f;(z)| < 0 for all 7,57 > n. In particular, for z €
S(ng, k), |fi(x) — fi(x)] < 0 for all i,j > n,. But S(ng, k) O E, so
|fi(x) — fi(x)| <0 for all 4,5 > ny, and all z € E. O

The theorem is not necessarily true if p(X) = oo. For example, if p
is Lebesgue measure on R and f,, = Xnnt1- Then f, — 0 pointwise,
but for any n # m, |f,(x) — fi(x)] =1 on a set of measure 2.

Convergence in measure. Here is an example. Let f,: X — R and
Jx |fal = 0. Then if € > 0,

intx |ful > /{ Wl el | ) > )

So, given € > 0, choose N such that for all n > N, [ |f.| < €®. Then
e > pu({z | fu(z) > €} for all m > N.

We say that f, — f in measure if given € > 0 there exists N such
that, for all n > N, u({z | |f(z) — fu(z)] > €}) <e.

Convergence almost everywhere implies convergence in mea-
sure.

Theorem 0.2. If f, — [ a.e. and p(X) < oo, then f, — f is
measure.

Proof. Let A = {z | fo(x) — f(x)}. Then pu(X \ A) = 0. Since
w(X) < 0o, u(A) < oo and we may apply Egoroff’s theorem. Thus,
there exists a set F such that u(A\ F) < € and f,, — f uniformly on
E. Given € > 0, there exists N such that |f(x) — f.(z)| < € for all
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n > N and all x € E. So, for n > N, |f(z) — fu.(x)| can be greater
than € only on (A\ F)U (X \ A). This means that

p({z | [falz) = f(2)] > €}) S A\ E) + p(X \ A4)
<e4+0=c¢

for all n > N. 0

However, if f, — f in measure, then it is not true that f, — f a.e.
For example, f,,: [0,1] — [0, 1] such that lim,, fol fn(z) dz = 0 but
fu(x) — 0 for no z.

Convergence in measure implies some subsequence conver-
gence almost everywhere.

Theorem 0.3. If f, — f in measure, then f, has a subsequence f,,
such that limy_.o fn, = f a.e.

Proof. Let € = 27%. Given k, there exists N (k) such that for n > N(k),
pl{e | 1F(@) — Fu(o)] > 274 < 2% Let B = {x | |foy(@) — ()] >
277}, Then pu(Ey) < 27F. If x € UR, F;, then o € (U2, E;) = N2, EE.
Then

|fy () = f(z)] <27 forevery i >k

= fne (@) — f(2).
Let o -
k=1i=k

Soif x ¢ A, then fyu(x) — f(x). For any k,

pA) < p(URE) <y 270 =27k,
i=k

so u(A) = 0. O

Dominated convergence theorem holds for convergence in mea-
sure. We know that dominated convergence and monotone conver-
gence still hold if we replace convergence with convergence almost ev-
erywhere. Now we show that the theorems are valid if we replace
convergence by convergence in measure.

Theorem 0.4. Let f,,: X — C be a sequence of measurable functions
defined a.e. Suppose f, — f in measure and |f,| < |g| a.e. with
g€ L' (u). Then

fdp= lim f, du.
X n—oo
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Note that the pointwise limit of f,, may not exist.

Proof. Take any subsequence f,,. Clearly, f,, — f in measure. There
exists a subsequence f,,), such that f(,,), — f pointwise a.e. Apply
dominated convergence to this subsequence. Then

/fdu— hm fnk dj.
O

Lemma 0.5. Let a,, be a sequence. If every subsequence has a subse-
quence which converges to a, then lim,, .. a, = .



