MEASURE AND INTEGRATION: LECTURE 10

Integration as a linear functional. A complex vector space is a set
V' with two operations: addition (4) and scalar multiplication (-).
Addition: For all x,y,z €V,
e r+y=y+=x.
er+(y+z)=(z+y) +z
e J unique vector 0 such that x 4+ 0 = z for all z.
e 3 (—x) such that z + (—xz) = 0.
Multiplication: For all a, 6 € C, x € V,
o l-z==x
o (B-2) = (af)
ea-(v4+y =a-rz4+a-y
e (a+f) z=a-xz+0- .

A linear transformation is a map A: V; — V5 from a vector space V;
to a vector space V3 such that A(axgy) = oAz + fAy. If V3 = C (or
R), then A is a linear functional.

Let (X, M, u) be a measure space. Then

LY(u) = {f: X —-C| /X]f|d,u<oo,f measurable}.

Note that [,: f +— [, f dp is a linear functional. Let g: X — C be
a bounded measurable function. Then f — [ + Jg du is also a linear

functional.
Special case: X = R". Let

CR"R)={f:R" — R | f continuous}.

The Riemann integral is a positive linear functional since f > 0 =
Af >0, where A is the Riemann integral.

Riesz theorem. Let X be a topological space and C'(X) be the set
of functions from X to R. If A: C'— R is a positive linear functional,
then there exists a o-algebra M and unique measure p on X such that
Af=] + [ du. Conversely, given a measure, then A is a positive linear
functional.
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Topology. Let X be a topological space. The space X is Hausdorff
if for all p,q € X such that p # ¢ there exist neighborhoods U and
V such that p € U, ¢ € V, and U NV = (). The space X is locally
compact if for all p € X there exists a neighborhood U of p such that
U (the closure of U) is compact. (Infinite dimensional spaces are not
locally compact.)

Let f: X — R. If {& | f(z) > a} is open for all a, then f is lower
semicontinuous. If {z | f(z) < a} is open for all «, then f is upper
semicontinuous. Examples: xy for U open is lower semicontinuous and
xr for F' closed is upper semicontinuous.

The support of a function f is defined as the set supp f = {z | f(z) #
0}. An important set is the set of all functions with compact support:

Co(X)={f: X — C| supp f is compact}.

Since supp f, C (supp f) U (supp g), C.(X) is a vector space.

Notation: (1) K < f means that K is compact, f € C.(X), 0
flz) < 1lforalx e X, and f(z) = 1forall z € K. (2) f <
means that V is open, f € C.(X), 0 < f(x) < 1 forall z € X, an
supp f C V.

;l<|/\

Urysohn’s lemma. Let X be alocally compact Hausdorff space, K C
V', K compact, U open. Then there exists f € C.(X) such that K <
f=V.

A corollary to Urysohn’s lemma is the existence of partitions of unity.
Let Vi,...,V, be open subsets of X (a locally compact Hausdorff space)
and K compact such that K C VjU---UV,,. Then there exists functions
h; < V; such that hy(z) +--- + h,(z) = 1.

Riesz representation theorem (for positive linear functionals).

Theorem 0.1. Let X be a locally compact Hausdorff space. Let
A: C(X)—C

be a positive linear functional (positive when restricted to f: X —
Rs¢). Then there exists a o-algebra M in X which contains all the
Borel sets and a unique positive measure p on M such that

(a) Af = [ f dp for all f e Co(X).
(b) pu(K) < oo for all compact sets K C X.
(c) If E € M, then

w(E) =inf{u(V) |E C V,V open}.
(d) If E is open or E € M with (E) < oo, then
p(E) =sup{u(K) | K C E, K compact}.
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(e) fEeM, ACE, and u(E) =0, then A € M.

Proof. (Outline) We must show uniqueness.

By (d), the measure of open sets determined by measure of compact
sets, and so by (c) the measure of any set in M is determined by the
measure of compact sets. Assume we have u; and po which satisfy
the conditions of the theorem, and let K be compact. For any ¢ > 0,
choose U open such that K C U and pz(U) < pa(K)+e. By Urysohn’s
lemma, there exists f € C.(X) such that K < f < V. Then

K)= d dui = A
p () /XXKMS/Xfﬂl S
and

Af=/Xf dms/XxV itz = (V) < 1a(K) + .

Since this holds for any € > 0, u1(K) < ps(K), and by reversing the
roles of py and po, we have p (K) = po(K).

Now let V' C X be open and define pu(V') = sup{Af | f < V}. For
E C X, define u(E) = inf{u(V) | E C V,V open} = X(E). (A\* will
not be countably additive on all sets, only on the g-algebra.) Let Mg
be the set of £ C X such that

u(E) =sup{u(K) | K C E, K compact} and pu*(F) < oco.

Finally, M is simply £ C X such that EN K € My for all K €
Mp. O

Properties.
) p* is countably subadditive: p(UE;) < > u(E;).

2) If E; € My are disjoint, then u(UE;) = > u(E;).

3) Mp contains all open sets.

4) (Approximation) If F € Mp and € > 0, then there exist K C
E CV, K compact, V open, such that u(V \ K) <e.

(5) M is a o-algebra that contains the Borel o-algebra B, and u is
countably additive on M.

(6) If f e Co(X), then Af = [, f dp.

Proof. Just NTS that Af < [, f du for f real in C¢(X). Then

“Af=A(—f) < / / f dy

:»Afz/xfdu.

The complex case follows from the real case by complex linear-
ity. Let f € C.(X) and supp f = K compact. The continuous

(1
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image of compact sets is compact = f(K) C [a,b]. Choose
€ > 0 and choose y; (i =0,1,...,n) such that y; — y;—1 < € and
Yo < a <y -+ <y, => (ie., partition the range by €). Let

Ei={z | yi=1 < f(z) Sy} N K.

Since f is continuous, f is Borel measurable and U} | E; = K
is a disjoint union. choose open sets V; O E; such that u(V;) <
w(E;)+e/nforeachi=1,... nand f(x) <y;+eforallxz € V,.
(The latter can be done by continuity of f.)

By partition of unity, there exists h; < V; such that > h; =1
on K. Write f =) h;f. Then

n(K) < A(Z hi) = ZAhi,

hif < (yi+€)h;, and y; — e < f(x) Vo € E;.
Thus,

Af = E;A(hif) < Z(y +€)Ah;

= (la| +yi + e)Ah; — |a] > A
=1 =1

< S (al + yi + ) (u(By) + e/n) — la| n(K)

= Z(!a\ + ) (u(E;))
= |a| p(K) + Z(!a\ +yi +e)e/n + Z yipn(F;)

n

- z:(yZ — e )u(E;) +2eu(K) +¢/n Z(|a| +yit+e)

=1 =1

< / f du + e(constant).
X
O

Definitions. A measure space (X, M, u) is called a Borel measure if
B c M. If w(E) = inf{u(V) | E C V,V open} for all £ € M,
then pu is called outer regular. Similarly, if u(E) = sup{u(K) | K C
E, K compact} for all E € M, then pu is called inner regular. If u is
both inner and outer regular, it is said to be regular.
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A space X is o-compact if X = U, K; where each K; is compact.
It is o-finite if X = U2, E; where u(E;) < oo for each i.

Addition to Riesz. If X is locally compact, o-compact, Hausdorff
space then we also have:

(1) If E € M and € > 0, then there exists FF C E C V, F closed,
V open, such that u(V \ F) < e.

(2) For all E € M there exists A C E C B such that A is F,,, B is
Gy, and u(B\ A) = 0.

Application. Let X = R¥ A: C.(X) — R given by Af = Jx [, the
Riemann integral. Then Lebesgue measure is what you get from the
Riesz theorem.



