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Lecture 8: Line Integrals

(Text 101-108)

Remarks on Lecture 8

The following rule (integration by substitution) is often useful.

Theorem 1 Let w = ¢(z) be a holomorphic function on a region Q. Let v be a
curve in §2, then

f(w) dw = /f({,o(z))w'(z) dz.

w(v)

Proof: Let 7 be given by
T b o2t), Lt <6

Then ¢(v) is given by
p  w(t) =e2(t), a<t< B
Then LHS equals ;
w®)(t) d.

and RHS equals

3 B
[ Fo(z(®)& (1) (8) dt = / F(w()w'(t) dt.

oy

Q.E.D.



Exercise 3 on page 108.
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so the problem is reduced to computing
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where v : |z| = 2 is the circle.

We have

Since log(z + 1) is
holomorphic in the region
C\ 1., where I, is the shown wedge with vertex —1 and opening of angle e. In this
region
d(log(z + 1)) 1

dz ozl
Letting € — 0 we deduce from Theorem p.107 middle
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using the circle [z — 1| = 1. Consequently,

dz
- = (.
/.,.zz -1

The result is obvious from our substitution theorem because if

Hence

Similarly,

then




So

&

l

/ d / dz
e = yBF=]

More generally we have

Theorem 2 Let R be a rational function on C. Then
/ R(z*) dz=0
Jy

for every circle v around the origin provided R(z*) # 0 on 7.





