MIT OpenCourseWare http://ocw.mit.edu

18.112 Functions of a Complex Variable Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Lecture 8: Line Integrals

(Text 101-108)

Remarks on Lecture 8

The following rule (integration by substitution) is often useful.

Theorem 1 Let $w = \varphi(z)$ be a holomorphic function on a region Ω . Let γ be a curve in Ω , then

$$\int_{\varphi(\gamma)} f(w) \ dw = \int_{\gamma} f(\varphi(z)) \varphi'(z) \ dz.$$

Proof: Let γ be given by

$$\gamma : z(t), \ \alpha \le t \le \beta.$$

Then $\varphi(\gamma)$ is given by

$$\varphi$$
: $w(t) = \varphi(z(t)), \ \alpha \le t \le \beta$.

Then LHS equals

$$\int_{0}^{\beta} f(w(t))w'(t) dt,$$

and RHS equals

$$\int_{\alpha}^{\beta} f(\varphi(z(t)))\varphi'(z(t))z'(t) \ dt = \int_{\alpha}^{\beta} f(w(t))w'(t) \ dt.$$

Q.E.D.

Exercise 3 on page 108.

We have

$$\frac{1}{z^2 - 1} = \frac{1}{2} \left(\frac{1}{z - 1} - \frac{1}{z + 1} \right),$$

so the problem is reduced to computing

$$\int_{\gamma} \frac{1}{z-1} dz$$
 and $\int_{\gamma} \frac{1}{z+1} dz$,

where γ : |z| = 2 is the circle.

Since $\log(z+1)$ is holomorphic in the region

 $\mathbb{C} \setminus I_{\epsilon}$, where I_{ϵ} is the shown wedge with vertex -1 and opening of angle ϵ . In this region

$$\frac{d(\log(z+1))}{dz} = \frac{1}{z+1}.$$

Letting $\epsilon \to 0$ we deduce from Theorem p.107 middle

$$\int_{\gamma+\Gamma} \frac{1}{z+1} \ dz = 0.$$

Hence

$$\int_{\gamma} \frac{1}{z+1} \ dz = 2\pi i.$$

Similarly,

$$\int_{\gamma} \frac{dz}{z - 1} = 2\pi i$$

using the circle |z - 1| = 1. Consequently,

$$\int_{\gamma} \frac{dz}{z^2 - 1} = 0.$$

The result is obvious from our substitution theorem because if

$$\varphi(z) = -z,$$

then

$$\varphi(\gamma) = \gamma$$
 (including orientation).

So

$$\int_{\gamma} \frac{dz}{z^2-1} = -\int_{\gamma} \frac{dz}{z^2-1}.$$

More generally we have

Theorem 2 Let R be a rational function on \mathbb{C} . Then

$$\int_{\gamma} R(z^2) \ dz = 0$$

for every circle γ around the origin provided $R(z^2) \neq 0$ on γ .