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Lecture 21 and 22: The Prime Number Theorem

(New lecture, not in Text)

The location of prime numbers is a central question in number theory. Around
1808, Legendre offered experimental evidence that the number π(x) of primes < x
behaves like x/ log x for large x. Tchebychev proved (1848) the partial result that
the ratio of π(x) to x/ log x for large x lies between 7/8 and 9/8. In 1896 Hadamard
and de la Valle Poussin independently proved the Prime Number Theorem that the
limit of this ratio is exactly 1. Many distinguished mathematicians (particularly
Norbert Wiener) have contributed to a simplification of the proof and now (by an
important device by D.J. Newman and an exposition by D. Zagier) a very short and
easy proof is available.

These lectures follows Zagier’s account of Newman’s short proof on the prime
number theorem. cf:

(1) D.J.Newman, Simple Analytic Proof of the Prime Number Theorem, Amer.
Math. Monthly 87 (1980), 693-697.

(2) D.Zagier, Newman’s short proof of the Prime Number Theorem. Amer.
Math. Monthly 104 (1997), 705-708.

The prime number theorem states that the number π(x) of primes which are
x

less than x is asymptotically like :
log x

π(x)
−→ 1 as x → ∞.

x/ log x

Through Euler’s product formula (I) below (text p.213) and especially through
Riemann’s work, π(x) is intimately connected to the Riemann zeta function

∑∞ 1
ζ(s) = ,

ns
n=1

which by the convergence of the series in Res > 1 is holomorphic there.
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The prime number theorem is approached by use of the functions

log p
Φ(s) =

∑

, V(x) = log p.
ps

p prime p≤x

∑

prime

1
Simple properties of Φ will be used to show ζ(s) = 0 and Φ(s)− holomorphic

s − 1
for Res ≥ 1. Deeper properties result from writing Φ(s) as an integral on which
Cauchy’s theorem for contour integration can be used. This will result in the relation
V(x) ∼ x from which the prime number theorem follows easily.

∞
1

I =
∏

(1 − p−s

n
) for Res > 1.

ζ(s)
1

∞

Proof: For each n (1 − p−s
n )−1 =

∑

p−ms
n . Putting this into the finite product

m=0

∏N N ∞

(1 − p−s
1 )−1 we obtain

∏

(1 − p−s 1
n )− = n

1 1

∑
−s
k . Now let N → ∞.

k=1

1
II ζ(s) − extends to a holomorphic function in Res > 0.

s − 1

Proof: In fact for Res > 1,

∞
1

ζ(s) − =
s − 1

∑ 1 ∞

−
ns

∫
dx

1 xs
n=1
∞

=
∑

n=1

∫ n+1

n

(
1 1

−
ns xs

)

dx

But ∣
∣ 1 1 x dy s s
∣ −

∣
∣
∣ =

∣
∣∫

∣
∣

∣ s ∣ ≤ max ≤ ,
ns xs ∣ ∣ ys+1

∣
∣

∣ ∣
∣
∣ys+1 R≤x

∣

sn≤

∣

n e +1yn

so the sum above converges uniformly in each half-plan

∣
∣

e Res ≥ δ (δ > 0).

III V(x) = O(x) (Sharper form proved later).

Proof: Since the p in the interval n < p ≤ 2n divides (2n)! but not n! we have

2n

22n = (1 + 1)2n =
∑

k=0

(
2n

k

)

≥

(
2n

n

)

≥
n<

∏

p = eV(2n)−V(n),
p≤2n

6
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Thus
V(2n) − V(n) ≤ 2n log 2. (1)

x
If x is arbitrary, select n with n < ≤ n + 1, then

2

V(x) ≤ V(2n + 2) ≤ V(n + 1) + (2n + 2) log 2 (by (1))

= V
(x

+ 1
)

+ (x + 2) log 2
2

= V
(x)

+ log
(x

+ 1
2 2

)

+ (x + 2) log 2.

Thus if C > log 2,

V(x) − V
(x)

≤ Cx for x ≥ x0 = x0(C). (2)
2

Consider the points

x x x x x x
0 rr+1 r-1

2 2 2 2

Use (2) for the points right of x0,

V
(x

2

)

− V
( x

22

) x
≤ C ,

2
...

x
V

(

2r

)

− V
( x

2r+1

) x
≤ C .

2r

Summing, we get

x
V(x) − V(x0) ≤ V(x) − V

(

2r+1

x

)

≤ Cx + · · ·+ C ,
2r

so
V(x) ≤ 2C(x) + O(1).

3

x x
0

x

2
r+1

x

2
r-1

x

2
r

x
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IV ζ(s) = 0 and Φ(s) − is holomorphic for Res ≥ 1.
s − 1

Proof: If Res > 1, part I shows that ζ(s) = 0 and

ζ ′(s) log p
− =

∑ log p
= Φ(s) + .

ζ(s) ps − 1

∑

(3)
ps(ps − 1)

p p

1
The last sum converges for Res > , so by II, Φ(s) extends meromorphically to

2
1

Res > with poles only at s = 1 and at the zeros of ζ(s). Note that
2

ζ(s) = 0 =⇒ ζ(s̄) = 0.

Let α ∈ R. If s0 = 1 + iα is a zero of ζ(s) of order µ ≥ 0, then

ζ ′(s) µ
− = − + function holomorphic near s0.

ζ(s) s − s0

So
lim ǫΦ(1 + ǫ + iα) = −µ.
ǫ→0

We exploit the positivity of each term in

l
Φ(1 + ǫ) =

∑ og p

p1+ǫ
p

for ǫ > 0. It implies
∑ log p i

p1+ǫ

(

p+ α

2 + p−
iα

2

p

)2

≥ 0,

so
Φ(1 + ǫ + iα) + Φ(1 + ǫ − iα) + 2Φ(1 + ǫ) ≥ 0. (4)

By II, s = 1 is a simple pole of ζ(s) with residue +1, so

lim ǫΦ(1 + ǫ) = 1.
ǫց0

Thus (4) implies
−2µ + 2 ≥ 0,

so
µ ≤ 1.

6
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This is not good enough, so we try

∑ log p (
+ iα − iα

4

p 2 + p 2

p1+ǫ
p

)

≥ 0.

Putting
lim ǫΦ(1 + ǫ ± 2iα) = −ν,
ǫց0

where ν ≥ 0 is the order of 1 ± 2iα as a zero of ζ(s), the same computation gives

6 − 8µ − 2ν ≥ 0,

1
which implies µ = 0 since µ, ν ≥ 0. Now II and (3) imply Φ(s)− holomorphic

s − 1
for Res ≥ 1.

∫ ∞ V(x) − x
V

2
dx is convergent.

1 x

Proof: The function V(x) is increasing with jumps log p at the points x = p. Thus

Φ(s) =
∑ log p

ps
p

= s

∫ ∞ V(x)
dx

1 xs+1

∞ p
In fact, writing

∫
as

∑

i

∫
i+1

pi

this integral becomes
1

∑∞ 1 1 −1
i=1 V(pi) ps −

i
ps s

i+1

which by V(pi+1) − V(pi) = log pi+1 reduces to Φ(s). Using the subs

(

titution x

)

= et

we obtain
∞

Φ(s) = s

∫

e−stV(et) dt Res > 1.
0

Consider now the functions

f(t) = V(et)e−t − 1,

Φ(z + 1) 1
g(z) = − .

z + 1 z

f(t) is bounded by III and we have

∫ eT

V(x) − x T

dx =
2

1 x

∫

f(t) dt . (5)
0
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Also, by IV,
1

Φ(z + 1) = + h(z),
z

where h is holomorphic in Rez ≥ 0, so

Φ(z + 1) 1 h(z) − 1
g(z) = − =

z + 1 z z + 1

is holomorphic in Rez ≥ 0.

For Rez > 0 we have

g(z) =

∫ ∞ ∞

e−zt(f(t) + 1) −
0

∫

e−zt dt
0

∞

=

∫

e−ztf(t) dt.
0

Now we need the following theorem:

Theorem 1 (Analytic Theorem) Let f(t) (t ≥ 0) be bounded and locally inte-

grable and assume the function

g(z) =

∫ ∞

e−ztf(t) dt Re(z) > 0
0

extends to a holomorphic function on Re(z) ≥ 0, then

T

lim

∫

f(t) dt
T→∞ 0

exists and equals g(0).

This will imply Part V by (5). Proof of Analytic Theorem will be given later.

VI V(x) ∼ x.

Proof: Assume that for some λ > 1 we have V(x) ≥ λx for arbitrary large x. Since
V(x) is increasing we have for such x

∫ λx V(t) − t
dt ≥

∫ λx λx − t − s
dt =

∫ λ λ
ds = δ(λ) > 0.

t2 x t2 1 s2
x

On the other hand, V implies that to each ǫ > 0, ∃K such that

∣
∣
∫ K2 V(x) − x

dx
K1

x2

∣
∣

< ǫ for K1, K2 > K.∣
∣

∣
∣
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Thus the λ cannot exist.

Similarly if for some λ < 1, V(x) ≤ λx for arbitrary large x, then for t ≤ x,

V(t) ≤ V(x) ≤ λx,

so ∫ x V(t) − t λ 1 −
≤

∫ x x − t
∫

λ s
= ds = δ(λ) < 0.

2
λx t λx t2 λ s2

Again this is impossible for the same reason. Thus both

V(x)
β = lim sup > 1

x→∞ x

and
V(x)

α = lim inf < 1
x→∞ x

are impossible. Thus they must agree, i.e. V(x) ∼ x.

Proof of Prime Number Theorem:

We have
V(x) =

∑

log p ≤
∑

log x = π(x) log x,
p≤x p≤x

so
π(x) log x V(x)

lim inf ≥ lim inf = 1.
x→∞ x x→∞ x

Secondly if 0 < ǫ < 1,

V(x) ≥
x1−

∑

log p
ǫ≤p≤x

≥ (1 − ǫ)
x1−

∑

log x
ǫ≤p≤x

= (1 − ǫ) log x
(
π(x) + O(x1−ǫ)

)

thus
π(x) log x 1 V(x)

lim sup ≤ lim sup
x→∞ x 1 − ǫ x→∞ x

for each ǫ. Thus
π(x) log x

lim = 1.
x→∞ x

Q.E.D.
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Proof of Analytic Theorem: (Newman).

Put

gT (z) =

∫ T

e−ztf(t) dt,
0

which is holomorphic in C. We only need to show

lim gT (0) = g(0).
T→∞

Fix R and then take δ > 0 small enough so that
g(z) is holomorphic on C and its interior.

|z| = R

δ 0

C

By Cauchy’s formula

g(0) − gT (0) =

1 z2 dz
(g(z) − gT (z)) ezT 1 + . (6)

2πi

∫

C

(

R2

)

z

On semicircle

C+ : C ∩ (Rez > 0)

2B
integrand is bounded by , where

R2

B = sup |f(t)|.
t≥0

In fact for Rez > 0,

∞

|g(z) − gT (z)| =

∣
∣
∫

∣ f(t)e−zt dt
T

∣
∣

∞

≤

∣
∣

B

∣

∫

|e−zt| dt
T

Be−RezT

=
Rez

and ∣
∣

ezT

(
z2

1 +
R2

)
1

z

∣
∣

∣ R z
∣ = e ezT 2Re

· (z = Reiθ).
R2∣ ∣
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B
So the contribution to the integral (6) over C+ is bounded by , namely

R

Be−RezT
T z B

· eRez 2Re 1
· · πR = .

Rez R2 2π R

Next consider the integral over

C_ = 0
.

Look at g(z) and gT (z) separately. For gT (z) which is entire, this contour can be
replaced by

C'_ =
0
.

B
Again the integral is bounded by because

R

T

|gT (z)| =

∣
∣
∫

∣ f(t)e−ztdt
∣

0

∣
∣
∣

≤ B

∣

∫ T

|e−zt| dt
0
T

≤ B

∫

|e−zt| dt
−∞

Be−RezT

=
|Rez|
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and ∣
∣
(

z2

1 +
R2

)
1

z

∣
∣

on C ′ has the same estimate as bef

∣
∣

ore.

∣
∣

There remains
∫

1
ezT g(z) d .

C

(
z2

1 + z
R2

)

z
︸

indep
︷

.
︷

of T

︸

C_ =
δOn the contour, |ezT | ≤ 1 and

lim |ezT | → 0 for Rez < 0.
T→∞

By dominated convergence, the integral → 0 as T →
+∞, δ is fixed. It follows that

2B
lim sup |g(0) − gT (0)| ≤ .

T→∞ R

Since R is arbitrary, this proves the theorem.

Q.E.D.

Remarks: Riemann proved an explicit formula relating the zeros ρ of ζ(s) in 0 <
Res < 1 to the prime numbers. The improved version by von Mangoldt reads

V(x) =
∑

log p
p≤x

= x −
∑ xρ x−2

+
ρ

∑ n

− log 2π.
2n

{ρ} n≥1

1
He conjectured that Reρ = for all ρ. This is the famous Riemann Hypothesis.

2
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C_ =
δ


