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Lecture 18: Infinite Products
 

(Text 191-200) 

Remarks on Lecture 18
 

Problem 1 on p.197: Suppose that an → ∞ (all different, a condition missing in 
text) and An arbitrary complex numbers. Show that there 
exists an entire function f(z) which satisfies f(an) = An. 

Proof: (A simpler alternative to the hint in text). Let g(z) be an analytic function 
with simple zeros at the an. By the Mittag-Leffler theorem, there exists a mero­
morphic function h on C with poles exactly at the points an with the corresponding 
singular part 

An/bn 

z − an 

, g(z) = (z − an)k(z) , k(an) = bn �= 0 . 

Then 
f(z) = g(z)h(z) 

has the desired property. 

Q.E.D. 

Remarks on the formula for π cotπz (line 8 p.197) 

Since the product formula for sin πz has infinitely many factors taking the log­
arithmic derivative requires justification. Generally, write 

∞ N 
I I

f(z) = fn(z) = lim fn(z) = lim gN(z)
N→∞ N→∞ 

1 1 

the convergence being uniform on compacts. 
By Theorem 1, 

f ′ (z) = lim g ′ (z)N
N→∞ 

so 
′f ′(z) gN(z) 

= lim . 
f(z) N→∞ gN(z) 
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Here g ′ (z)/gN (z) is given by the rule for differentiating a product. N

This remark justifies to proof of (27) as well. 

In the text the Gamma function is defined by means of the product formula 
(29) in §2.4 and the integral formula (42) derived by an interesting residue calculus 
due to Lindelöf. Here we go a shorter way and derive the product formula from the 
definition in terms of the integral formula. 

The Gamma function can be defined by 
 

∞ 

tz−1Γ(z) = e −tdt Rez > 0. 
0 

Writing 
 n 

t−z−1fn(z) = e −tdt 
0 

fn is holomorphic and 
 

∞ 
 

∞ 

� tz−1 Rez−1|Γ(z) − fn(z)| ≤ e −tdt ≤ t e −tdt 
n n 

which → 0 uniformly in each half plane Rez > δ (δ > 0). Thus Γ(z) is holomorphic
 
in Rez > 0. Here are some of its properties
 
(i) Γ(z + 1) = zΓ(z).
 
This follows by integration by parts.
 
(ii) Γ(z) extends to a meromorphic function on C with simple poles at z = 0,−1,−2, . . ..
 
The function
 

Γ(z + 1) 
H(z) = 

z 

is meromorphic in Rez > −1 with a pole at z = 0. Since 

lim zH(z) 0 
z→0 

the pole is simple. The residue is Γ(1) = 1. Also H(z) = Γ(z) for Rez > 0. Thus 
Γ(z) is meromorphic in Rez > −1 with simple pole at z = 0. Statement (ii) follows 
by repetition. 
(iii) For x > 0, y > 0

 1 Γ(x)Γ(y)
tx−1(1 − t)y−1dt = . 

0 Γ(x + y) 

r

′ Γ(z)Γ(w)Extend to Re z > 0 , Rew > 0 tz−1(1 − t)w−1 dt = 
0 Γ/2+w 

Proof: 
 

∞ 
 

∞ 

tx−1Γ(x)Γ(y) = e −tdt sy−1 e −sds 
0 0 
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Put s = tv. Since integrands are positive, integrals can be interchanged. We get
 
∞ ∞ 

tx−1 y−1ty −tvdv Γ(x)Γ(y) = e −tdt v e 
0 0 

u 
tx+y−1 −(v+1)tdt = 

∞ 

vy−1dv 
∞ 

e	 t = 
1 + v0 0 

x+y−1 = 
∞ 

vy−1dv 
∞ 

u e −u(1 + v)−x−ydu 
0 0 

∞ y−1	 1 v
= Γ(x + y)	 dv = Γ(x + y) s x−1(1 − s)y−1ds (1) 

0 (1 + v)x+y	 
0 

the last expression coming from v = s−1(1 − s). This proves (iii), and it extends to 
Re z > 0, Re w > 0. 
(iv) Γ(z)Γ(1 − z) = π 

sinπz 

From (1) we obtain 
∞ −xv

Γ(x)Γ(1 − x) = dv 
1 + v0 

which evaluates to π/ sin(πx) by the method of Exercise 3(g) p. 161, done in Lec­
ture 15. This proves (iv) by meromorphic continuation. 

Since the poles of Γ(z) are canceled by zeros of sin πz, Γ(1 − z) is never 0. By 
(iii) we have for 0 < h < x 

2 
z = x + iy 

Γ(z − h)Γ(h) 1 

= (1 − t)z−h−1th−1 dt 
Γ(z) 0 

1 

= 
1

+ [(1 − t)z−h−1 − 1]th−1 dt . 
h 0 

In the integral we use the dominated convergence theorem to justify letting h → 0 
under the integral sign.	 In the interval [1

2
, 1] there is no problem bounding the 

< x 1integrand uniformly for h 
2
. On the interval [0, 

2
] we have (with α = z − h − 1) 

h−1 (1 − t)α − 1 
((1 − t)α − 1)t ≤ 

t 

and by l‘Hospital’s rule this has limit |α| = |z−h−1| ≤ |z|+2 so again the integrand 
is bounded. Thus we let h → 0 and obtain 

Γ(z − h)Γ(h) 1 1 

= + [(1 − t)z−1 − 1]t−1 dt + o(1) as h → 0 . 
Γ(z) h 0 

The left hand side is using Taylor for h → Γ(z − h) and Laurent for h → Γ(h) both 
at h = 0 

  

1 1 
(Γ(z) − hΓ ′ (z) + · · · ) + A + Bh · · ·

Γ(z)	 h 
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where { } is the Laurent series for Γ(h) with center h = 0. Equating the constant 
terms on left hand side and right hand side we get 

Γ′(z) 1 

= (1 − (1 − t))z−1t−1 dt − A x > 0 . 
Γ(z) 0 

L

Writing t−1 = ∞ 

0 (1 − t)n the expression is 

1 
L

[(1 − t)n − (1 − t)n+z−1] dt− A , 
0 0 

and since expression in [ ] equals (1−t)n (1−(1−t)z−1 )t which is bounded by (1− t)nKt,
t 

r
L

with integral K/(n + 1)(n + 2) we can exchange and n by the dominated con­
vergence theorem. Thus our expression equals 

1 
L 

[(1 − t)n − (1 − t)n+z−1] dt − A 
00 

∞   ∞   

L L1 1 1 1 1 
= − − A = 1 − + − − A 

n + 1 n + z z n + 1 n + z
0 1
∞   ∞   

L L1 1 1 1 1 
= − − + − − A 

n n + 1 z n + 1 n + z
1 1

∞   

L1 1 1 
= − + − − A 

z n n + z
1

so 

∞   

LΓ′(z) 1 1 1 
= + = − − A . 

Γ(z) z n n + z
1

Having justified taking logarithmic derivative of an infinite product this gives 

I

( )1 
∞ 

zCz − 
n= ze 1 + e 
z 

C = const . 
Γ(z) n

1 

Putting z = 1 we have 

∞   

I 1C − 
1 
n1 = e 1 + e 

n
1

so 

( )

1C −(1+ 1 +··· 
N )21 = e lim (N + 1)e 

N→∞ 

so 
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1 1 
0 = C + lim log(N + 1) − 1 − − · · · − = C − γ 

N→∞ 2 N 
so 

C = the Euler constant γ . 
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