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Lecture 17: Mittag-Leffer’s Theorem

(Text 187-190)

Theorem 1 (Mittag-Leffer’s Theorem) Let {b,} be a sequence in C such that
lim b, = oo,

V—00

and P,(¢) polynomials without constant term. Then there exist functions f mero-
morphic in C with poles at just the points b, and corresponding singular parts

1
P, )
(z - b,,)

The most general f(z) of this kind can be written

16 =9+ 2 R (25 ) o) 0

where g is holomorphic in z and the p, are polynomials.

1
Proof: We may assume all b, # 0. Consider the Taylor series for P, < 2 )
Z =0y

around z = 0. It is analytic for |z| < |b,|. Let p,(z) be the partial sum up to 2"
(n, to be determined later). Consider the finite Taylor series of

o0 =2 (=5)

in a disk D with center 0. By (29) on p.126,

IR (O
o2 =50 /o o™




by
Taking C' as the circle with center 0 and radius % and n = n, + 1 we deduce

1 |b M, b, ]
2 v
where |
M, = max | P, < ) ' .
zeC z—0b,
Thus by Theorem 8 on p.125,
1 2/2[\™" |y
P, — Dy <2M, f < : 2
(25) -~ =200, (5F) or |- < )
We now select n,, large enough so that
2™ > M,2".

Then

2\ b,
2M, <2V i <
(w) orlel <

We claim now that the sum (1) converges uniformly in each disk |z| < R (except
at the poles) and thus represents a meromorphic function h(z). To see this we split
the sum in (1):

n= 3 (n (Z5) )+ (7 (7)) ®

lel<p lbvl > R

4

Because of (2), the second sum is holomorphic for |z| < R since R < ‘bT”‘. The
first sum is finite and has
P 1
"\ z—b,

as the singular part at the pole b,.

This proves the existence. If f is any other meromorphic function with these
properties, then f(z)—h(z) is holomorphic. Q.E.D.



Exercise 3 on p.178

Here we need some preparation on series of the form

o9
E QpUp,
n=1

and use on
a, = (=1)", v, =(1+n)""°, s = o +it.

We have if
A, =ag+ -+ ay,

then
1

N _
Ao —|—Z(An — A, q1)v, — ZAn(Un — Upy1) = Anvn.
n=1 =0

3

Lemma 1 If (A,) is bounded, v, — 0, and

(e e]

Z ‘Un - Un—i—l‘ < o0,

n=1

[ee]
then > a,v, converges.
n=0

This is obvious from the identity above.

In our example,

1
vp=(14+n)"% = —-—,
a0~ = o
so v, — 0 even uniformly on compact subsets of Res > 0. For v, — v,11 we have
1 1 n+2 .
Uy — Upal = - =35 r 7 dr,
RV RN CRPIE /nﬂ
SO
‘U v +1‘ |S| (n+ 1)J+1
Thus
- 1
> (==
n=1

converges, and actually uniformly on compact sets in the region o > 0 because this
is the case with v, — 0 and > |v, — V41|



Exercise 1 on p.186

For a given annulus
R, < \z—al <R2,

the expansion
[e.9]
Z Ap(z—a)™
—0o0

is unique because the coefficients are determined by (3). For different annuli (even
with the same center) the expansion for a given function may be different. Consider

1 1
z—a—z—b—(a—b)
11
- z—b
1—Eb—a
1
- a—b '
1—4=z-b

The first formula gives

1 1 o [(z-b)"
— ) f b <]a—b
Pl R (a—b) or 0 <|z—>5| <la—b,

n—=

the second

1 1 —/a—b\"
z—a:z—bz<z—b> for [a — b| < |z — b] < 0.

n=0





