18.112 Functions of a Complex Variable Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Lecture 15: Contour Integration and Applications

(Text 154-161)

Remarks on Lecture 15

In parts 4 and 5 (p. 154-160) some clarification of the use of the logarithm are called for.

Example 4 p.159

The relation

$$(-z)^{2\alpha} = e^{2\pi i\alpha} z^{2\alpha}$$

which is crucial for proof deserves explanation.

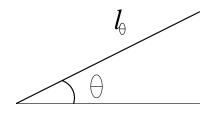


Fig. 15-1

We consider the function

$$\log_{\theta} z = \log|z| + i \arg_{\theta} z$$

in the region $\mathbb{C} - l_{\theta}$ (the plane with the ray l_{θ} removed) where the angle is fixed by

$$\theta < \arg_{\theta} z < \theta + 2\pi.$$

In the problem of computing

$$\int_0^\infty x^\alpha R(x) \ dx$$

we consider

$$\log_{-\frac{\pi}{2}}(z)$$

in the plane \mathbb{C} with the negative imaginary axis removed and us the Residue theorem on the contour in Fig. 4.13. As in the text we arrive at the integral

$$\int_{-\infty}^{\infty} z^{2\alpha+1} R(z^2) \ dz = \int_{0}^{\infty} \left(z^{2\alpha+1} + (-z)^{2\alpha+1} \right) R(z^2) \ dz.$$

On the right z belongs to $(0, \infty)$ and

$$\log_{-\frac{\pi}{2}}(z) = \log|z| + \left(-\frac{\pi}{2} + \frac{\pi}{2}\right)i, \qquad \frac{-\pi}{2} < \arg_{-\frac{\pi}{2}}z < \frac{3\pi}{2},$$

$$\log_{-\frac{\pi}{2}}(-z) = \log|z| + \left(-\frac{\pi}{2} + \frac{3\pi}{2}\right)i$$

$$= \log_{-\frac{\pi}{2}}(z) + i\pi, \qquad z > 0.$$

Thus for z > 0,

$$(-z)^{2\alpha+1} = e^{(2\alpha+1)\log_{-\frac{\pi}{2}}(-z)}$$

$$= e^{(2\alpha+1)(\log|z|+i\pi)}$$

$$= -e^{2\alpha i\pi}z^{2\alpha+1},$$

so the last integrals combine to

$$(1 - e^{2\alpha i\pi}) \int_0^\infty z^{2\alpha+1} R(z^2) dz.$$

For z > 0 we have from the above

$$\log_{-\frac{\pi}{2}}(z) = \log|z|,$$

SO

$$\frac{1}{2\pi i} \int_{-\infty}^{\infty} z^{2\alpha+1} R(z^2) dz = \frac{1}{2\pi i} (1 - e^{2\alpha i\pi}) \int_{0}^{\infty} x^{2\alpha+1} R(x^2) dx
= -\frac{1}{\pi} e^{\alpha\pi i} \sin \pi \alpha \int_{0}^{\infty} x^{2\alpha+1} R(x^2) dx.$$
(1)

The left hand side of (1) is the sum of the residues of

$$z^{2\alpha+1}R(z^2) = f(z)$$

in the upper half plane. If

$$R(z^2) = \frac{g(z)}{h(z)},$$

where g and h are holomorphic, $g(a) \neq 0$, and h has a simple zero at a, then

$$\operatorname{Res}_{z=a} f(z) = z^{(2\alpha+1)}(a) \frac{g(a)}{h'(a)}, \tag{2}$$

where

$$z^{2\alpha+1} = e^{(2\alpha+1)\log_{-\frac{\pi}{2}}(z)}.$$

Example: Exercise 3(g) p.161

To calculate

$$\int_0^\infty x^{\frac{1}{3}} \frac{dx}{1+x^2},$$

we use $x = t^2$ and arrive at

$$\int_{-\infty}^{\infty} z^{\frac{5}{3}} \frac{dz}{1+z^4}$$

in (1). The poles in the upper half plane are

$$z = e^{i\frac{\pi}{4}}$$
 and $z = e^{i(\frac{\pi}{4} + \frac{\pi}{2})}$.

We use (2) to calculate the residues:

$$\operatorname{Res}_{z=e^{i\frac{\pi}{4}}} \left(z^{\frac{5}{3}} \frac{1}{1+z^4} \right) = z^{\frac{5}{3}} \left(e^{i\frac{\pi}{4}} \right) \frac{1}{4(e^{i\frac{\pi}{4}})^3}$$

$$= e^{\frac{5}{3}\log_{-\frac{\pi}{2}} \left(e^{i\frac{\pi}{4}} \right)} \frac{1}{4(e^{i\frac{\pi}{4}})^3}$$

$$= e^{\frac{5}{3} \left(i\frac{\pi}{4} \right)} \frac{1}{4(e^{i\frac{\pi}{4}})^3}$$

$$= \frac{1}{4} e^{-i\frac{\pi}{3}},$$

and

$$\operatorname{Res}_{z=e^{i\frac{3\pi}{4}}} \left(z^{\frac{5}{3}} \frac{1}{1+z^4} \right) = z^{\frac{5}{3}} \left(e^{i\frac{3\pi}{4}} \right) \frac{1}{4(e^{i\frac{3\pi}{4}})^3}$$

$$= e^{\frac{5}{3} \log_{-\frac{\pi}{2}} \left(i \left(-\frac{\pi}{2} + \frac{5\pi}{4} \right) \right)} \frac{1}{4(e^{i\frac{3\pi}{4}})^3}$$

$$= \frac{1}{4} e^{-i\pi}.$$

Thus (1) gives

$$\frac{1}{4}e^{-i\frac{\pi}{3}} + \frac{1}{4}e^{-i\pi} = -\frac{1}{\pi}e^{\frac{1}{3}\pi i}\sin\frac{\pi}{3}\int_0^\infty x^{\frac{5}{3}}\frac{dx}{1+x^4},$$
$$\int_0^\infty x^{\frac{5}{3}}\frac{dx}{1+x^4} = \frac{\pi}{2\sqrt{3}}.$$

SO

Example 5 p.160

The last four lines on the page are a bit misleading because the specific logarithm has already been chosen. So here is a completion of the proof after the equation

$$\int_0^{\pi} \log(-2ie^{ix}\sin x) \ dx = 0.$$

We know (Lecture 2) that

$$Log(z_1 z_2) = Log z_1 + Log z_2, \quad \text{if } -\pi < Arg z_1 + Arg z_2 < \pi. \tag{3}$$

Using this for $z = 2 \sin x$ we get

$$\int_0^{\pi} \log(2\sin x) \ dx + \int_0^{\pi} \log(-ie^{ix}) \ dx = 0.$$
 (4)

But

$$Log(-i) = -\frac{\pi i}{2}, \qquad Loge^{ix} = ix \ (0 < x < \pi),$$

so since $-\frac{\pi}{2} + x$ is in $(-\pi, \pi)$, (3) implies

$$Log(-ie^{ix}) = -\frac{\pi i}{2} + ix.$$

Now (4) implies the result

$$\int_0^{\pi} \log \sin \theta \ d\theta = -\pi \log 2.$$