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Lecture 14: The Residue Theorem and Application

(Replacing Text 148-154)

Let € be a region and a € Q. Let f(z) be holomorphic in ' =Q —a

Definition 1 The residue is defined as

R= Res_f() 2 - /C f(2) d,

where C' is any circle contained in ) with center a.

If C’ is another circle with
center a and

C C'cQ,
then Cauchy’s Theorem for the
annulus shows that

Res,—.f(2)

is independence of the choice of

C.

While the definition can be

shown to be equivalent to Defi-

. nition 3 on p.149 in the text, we
Flg' 14-1 shall not need this.

In place of Theorem 17 (Text p.150) we shall prove the following version:

Theorem 17 ' Let f be analytic except for isolated singularities a; in a region §1.
Let y be a simple closed curve which has interior contained in Q0 and a; ¢ v (all j).

Then
1

57 /Vf(z) dz = ; Res.—q, f(2).

where the sum ranges over all a; inside 7.



Proof:

Fig. 14-2

By compactness of v and its interior, the sum above is finite. For simplicity let
ai,as be the singularities inside ~.

The outside of ~ is
v connected and if we take
two disks Dy, Dy around

a; and ae and connect
their boundaries to v with
I ] “bridges” as in Fig. 14-3,
the piece remaining in the

interior of ~y is simply con-
nected (the complement is

Fig 1 4-3 connected). Thus the in-
tegral over the boundary
of this region is 0.

Letting the widths of the bridges tend to 0, the theorem follows. Q.E.D.



Calculation of residues.

1. If
lim f(2)(z — a)

zZ—a
exists and is finite, then it equals Res,—,f(z).

In fact a is then a pole of f(z), so
f(2)=Bulz—a) "+ + Bi(z — a) ™" + ¢(2), By, # 0.
Then )
— dz = B
271 /Cf(z) : !

and since the singular part above equals
(z—a)™By+ Br1(z—a)+ -+ Bi(z — a)"™)

the finiteness of the limit implies A < 1.

2. If f(2) = 22 where g(a) # 0 and h(z) has a simple zero at z = a, then

h(z)
~ g(a)
Resz:af(z) - h/(&)
In fact 1 (a)
. 3 g a
ll_ffclb fla)(z —a) = E{gg('z) h(z)—ha) W (a)

3. If f has a pole of order h, then

Res._.f(z) = 0 _1 0 {C;ih—l(z — a)hf(z)}z_a.

In fact

where ¢ is holomorphic at a. So

h—1 1 ?
g*(a) = (h - 1)!%/0 (ng 0)L>hdz — (h— 1)Res._f(2).

Example: (from text p.151.)




Application: The Argument Principle.

Theorem 18 ' Let f(z) be meromorphic in Q, v C Q a simple closed curve with
interior inside ). Assume vy passes through no zeros nor poles of f. Then

1[G
2mi )., f(2)

where N is the number of zeros, P the number of poles inside 7, all counted with
multiplicity.

dz= N — P,

Proof: By theorem 17’, the integral is the sum of the residues of f'(z)/f(2).

At a ero a of order h, we have

f(2) = (z=a)"fu(2),  fula) #0

and

f'(2) _ h + fn(2) — Residue h,

) z=a ful2)

At a pole b of order k, we have similarly

f'z) _ =k fi(2)

= + — Residue — k.

fz)  z2=b " fulz)

Now the result follows from Theorem 17'. Q.E.D.

Corollary 1 (Rouche’s Theorem) Let f and g be holomorphic in a region §).
Let v be a simple closed curve in Q with interior C 2. Assume

1f(2) —g(2)] < f(2) on .

Then f and g have the same number of zeros inside vy, say Ny and N,.

Proof: (The text does not take into account the case when f and g have common
eros). The inequality implies that f and g are ero-free on . Put

_9()
then
[(z) — 1] <1



on 7, so the curve I' = ¢(~y) lies in the disk |( — 1| < 1. Hence

O [ee), [k
omi ] 0z /rc n(l,0) =0

(book p.116). Now

1L [d(=)
97 omi ), g(2)

/ V'f+ W’

dz

2772

et 1 i,
2772 N ¢(z)d i 27m'/7 f(z)
— N,

This proves the result. Q.E.D.

Exercise 2 p.154
We use Rouche’s theorem twice, first on 7y : |z| = 2 and then on 7 : |z| = 1.
For 7 : |z = 2, take f(2) = 2%, g(2) = 2* — 62 + 3.
For v : |z| = 1, take f(2) = —62, g(z) = 2* — 62 + 3.




