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Lecture 10: The Special Cauchy’s Formula and
Applications

(Text 118-126)

Remarks on Lecture 10

Exercise 6 on page 108

The values of f(z) lie in the disk |w — 1] < 1 which is contained in the slit plane
where Logw is defined. thus Logf(z) is well-defined and holomorphic in 2 and has
derivative

Thus

by the Primitive theorem.

Exercise 2 on page 120

By using the substitution w = ¢(z) = —z we have
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Since ¢(y) = 7 (including the orientation). Thus the integral is 0.
Also

1 1
241 22— z+41




and
n<77 Z) = n(f}/a _2)7

so again the total integral is 0.

Exercise 3 on page 120

On |z| = p, we can write z = pe?, thus
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|dz| = pdf = —ip—
Thus
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If |a| > p, the first term is 0, the other term is
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so the result is
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If |a| < p, then the second is 0 and the other is
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Thus in both cases the result is
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» The Taylor’s Theorem (with remainder) proved in pp.125-126 should be stated
as follows:

Theorem 1 (Taylor’s Theorem) If f(z) is analytic in a region Q containing a,
one has
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f(z) = fla) + (z—a)+---+ (z—a)" ' + ful2)(z — a)",
where f,(2) is analytic in Q). Moreover, if C' is the boundary of a closed disk con-

tained in Q) with center a, then f,(z) has the representation
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