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Solution for 18.112 ps 6

1(Prob 1 on P193).
Solution: The partial product
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2(Prob 2 on P193).
Method 1. Note that

Taking limit, we get



thus

Method 2. You can use induction to prove
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Method 3. You can also use the uniqueness of 2-adic expansion to get
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3(Prob 3 on P193).
Method 1. By Theorem 5, it is enough to prove

ilog [(1 + %)e‘ﬂ

converges absolutely and uniformly on every compact set. Take integer M big
enough such that the given compact set is bounded by M /2. Then
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This proves
Zlog [(1 + E)e‘ﬂ
n
n=1
converges absolutely and uniformly on any compact set.

Method 2. By Theorem 6, it is enough to prove
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