MIT OpenCourseWare http://ocw.mit.edu

18.112 Functions of a Complex Variable Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Solution for 18.112 ps 6

1(Prob 1 on P193).

Solution: The partial product

$$P_n = \prod_{k=2}^n \left(1 - \frac{1}{k^2}\right)$$

$$= \prod_{k=2}^n \left(1 - \frac{1}{k}\right) \left(1 + \frac{1}{k}\right)$$

$$= \prod_{k=2}^n \frac{k+1}{k} \frac{k-1}{k}$$

$$= \frac{n+1}{2n},$$

thus

$$\prod_{n=2}^{\infty} \left(1 - \frac{1}{n^2} \right) = \lim_{n \to \infty} P_n$$

$$= \lim_{n \to \infty} \frac{n+1}{2n}$$

$$= \frac{1}{2}.$$

2(Prob 2 on P193).

Method 1. Note that

$$(1-z)P_n = (1-z)(1+z)\cdots(1+z^{2^{n-1}})$$

= 1-z^{2ⁿ}.

Taking limit, we get

$$(1-z)P = \lim_{n \to \infty} (1-z)P_n$$
$$= \lim_{n \to \infty} (1-z^{2^n})$$
$$= 1,$$

thus

$$P = \frac{1}{1 - z}.$$

Method 2. You can use induction to prove

$$P_n = \sum_{k=0}^{2^n - 1} z^k = \frac{1 - z^{2^n}}{1 - z},$$

thus

$$P = \frac{1}{1 - z}.$$

Method 3. You can also use the uniqueness of 2-adic expansion to get

$$P_n = \sum_{k=0}^{2^n - 1} z^k.$$

3(Prob 3 on P193).

Method 1. By Theorem 5, it is enough to prove

$$\sum_{n=1}^{\infty} \log \left[\left(1 + \frac{z}{n} \right) e^{-\frac{z}{n}} \right]$$

converges absolutely and uniformly on every compact set. Take integer M big enough such that the given compact set is bounded by M/2. Then

$$1 + \frac{|z|}{n} + \frac{|z|^2}{n^2} + \dots < 2$$

for $n \geq M$. So

$$\sum_{n=M}^{\infty} \left| \log[(1+\frac{z}{n})e^{-\frac{z}{n}}] \right| = \sum_{n=M}^{\infty} \left| [\log(1+\frac{z}{n}) - \frac{z}{n}] \right|$$

$$= \sum_{n=M}^{\infty} \left| [-\frac{1}{2}(\frac{z}{n})^2 + \frac{1}{3}(\frac{z}{n})^3 - \frac{1}{4}(\frac{z}{n})^4 + \cdots] \right|$$

$$\leq \sum_{n=M}^{\infty} \left| \frac{z}{n} \right|^2 \left(1 + \frac{|z|}{n} + \frac{|z|^2}{n^2} + \cdots \right)$$

$$\leq \frac{1}{2} M^2 \sum_{n=M}^{\infty} \frac{1}{n^2}.$$

This proves

$$\sum_{n=1}^{\infty} \log \left[\left(1 + \frac{z}{n} \right) e^{-\frac{z}{n}} \right]$$

converges absolutely and uniformly on any compact set.

Method 2. By Theorem 6, it is enough to prove

$$\sum_{n=1}^{\infty} \left| e^{-\frac{z}{n}} + \frac{z}{n} e^{-\frac{z}{n}} - 1 \right|$$

converges uniformly on |z| < R for any R. This is true, since

$$\left| e^{-\frac{z}{n}} + \frac{z}{n} e^{-\frac{z}{n}} - 1 \right| = \left| \sum_{i=2}^{\infty} \frac{(-z)^i}{n^i} \left(\frac{1}{i!} - \frac{1}{(i-1)!} \right) \right|$$

$$\leq \frac{|z|^2}{n^2} \sum_{i=2}^{\infty} \left(\frac{|z|}{n} \right)^{i-2} \frac{1}{(i-2)!}$$

$$\leq \frac{|z|^2}{n^2} e^{\frac{|z|}{n}}$$

$$\leq \frac{R^2}{n^2} e^{\frac{R}{n}}.$$