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Solution for 18.112 ps 5

1(Prob 1(f) on P161).

Solution: The function
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has two poles, 0 is a pole of order m and 1 is a pole of order n. At these poles, we
have the following expansions via Taylor series
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By the symmetry
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2(Prob 3(b) on P161).
Solution: According to (2) on page 156, we know that
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which has only simple poles, and
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Since the integrand is even function, we have
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3(Prob 3(f) on P161).
Solution: Suppose a # 0. By (3) on page 156, we know that
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Since the integrand is even function,
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In the case a = 0, the result is the same (See page 158).

4(Prob 3(h) on P161).
Solution: Define log z to be single-valued on C\ {iy|y < 0} by

log z = log |z| + iargz,

where argz € (—%, 3). Then
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where C'is the same curve as in Fig.4-13 on Page 160. On the other hand, let v be
the upper half semicircle with radius R, then
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which tends to 0 in both cases R — 0 and R — oo. Thus
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Take real part in both sides, we get
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Note that
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> logx
dr=1,=0
/0 1122072

N.B. If we are not restricted to use residue to compute this integral, we can get the
result without any difficulty by changing variable

r—t=—.
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