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Orthonormal Bases

Consider an inner product space V with inner product 〈f, g〉 and norm

‖f‖2 = 〈f, f〉

Proposition 1 (Continuity) If ‖un − u‖ → 0 and ‖vn − v‖ → 0 as n→∞, then

‖un‖ → ‖u‖; 〈un, vn〉 → 〈u, v〉.

Proof. Note first that since ‖vn − v‖ → 0,

‖vn‖ ≤ ‖vn − v‖+ ‖v‖ ≤M <∞

for a constant M independent of n. Therefore, as n→∞,

|〈un, vn〉 − 〈u, v〉| = |〈un − u, vn〉+ 〈u, vn − v〉| ≤M‖un − u‖+ ‖u‖‖vn − v‖ → 0

In particular, if un = vn, then ‖un‖2 = 〈un, un〉 → 〈u, u〉 = ‖u‖2. �

For u and v in V we say that u is perpendicular to v and write u ⊥ v if 〈u, v〉 = 0. The
Pythogorean theorem says that if u ⊥ v, then

‖u + v‖2 = ‖u‖2 + ‖v‖2 (1)

Definition 1 ϕn is called an orthonormal sequence, n = 1, 2, . . . , if 〈ϕn, ϕm〉 = 0 for n 6= m
and 〈ϕn, ϕn〉 = ‖ϕn‖2 = 1.

Suppose that ϕn is an orthonormal sequence in an inner product space V . The following
four consequences of the Pythagorean theorem (1) were proved in class (and are also in the
text):

If h =
N∑

n=1

anϕn, then

‖h‖2 =
N∑
1

|an|2. (2)
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If f ∈ V and sN =
N∑

n=1

〈f, ϕn〉ϕn, then

‖f‖2 = ‖f − sN‖2 + ‖sN‖2 (3)

If VN = span {ϕ1, ϕ2, . . . , ϕN}, then

‖f − sN‖ = min
g∈VN

‖f − g‖ (best approximation property) (4)

If cn = 〈f, ϕn〉, then

‖f‖2 ≥
∞∑

n=1

|cn|2 (Bessel’s inequality). (5)

Definition 2 A Hilbert space is defined as a complete inner product space (under the dis-
tance d(u, v) = ‖u− v‖).

Theorem 1 Suppose that ϕn is an orthonormal sequence in a Hilbert space H. Let

VN = span {ϕ1, ϕ2, . . . , ϕN}, V =
∞⋃

N=1

VN

(V is the vector space of finite linear combinations of ϕn.) The following are equivalent.

a) V is dense in H (with respect to the distance d(f, g) = ‖f − g‖),

b) If f ∈ H and 〈f, ϕn〉 = 0 for all n, then f = 0.

c) If f ∈ H and sN =
N∑

n=1

〈f, ϕn〉ϕn, then ‖sN − f‖ → 0 as N →∞.

d) If f ∈ H, then

‖f‖2 =
∞∑

n=1

|〈f, ϕn〉|2

If the properties of the theorem hold, then {ϕn}∞n=1 is called an orthonormal basis or complete
orthonormal system for H. (Note that the word “complete” used here does not mean the
same thing as completeness of a metric space.)

Proof. (a) =⇒ (b). Let f satisfy 〈f, ϕn〉 = 0, then by taking finite linear combinations,
〈f, v〉 = 0 for all v ∈ V . Choose a sequence vj ∈ V so that ‖vj − f‖ → 0 as j → ∞. Then
by Proposition 1 above

0 = 〈f, vj〉 → 〈f, f〉 =⇒ ‖f‖2 = 0 =⇒ f = 0
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(b) =⇒ (c). Let f ∈ H and denote cn = 〈f, ϕn〉, sN =
N∑
1

cnϕn. By Bessel’s inequality

(5),
∞∑
1

|cn|2 ≤ ‖f‖2 <∞.

Hence, for M < N (using (2))

‖sN − sM‖2 =

∥∥∥∥∥
N∑

M+1

cnϕn

∥∥∥∥∥
2

=
N∑

M+1

|cn|2 → 0 as M, N →∞.

In other words, sN is a Cauchy sequence in H. By completeness of H, there is u ∈ H such
that ‖sN − u‖ → 0 as N →∞. Moreover,

〈f − sN , ϕn〉 = 0 for all N ≥ n.

Taking the limit as N →∞ with n fixed yields

〈f − u, ϕn〉 = 0 for all n.

Therefore by (b), f − u = 0.

(c) =⇒ (d). Using (3) and (2),

‖f‖2 = ‖f − sN‖2 + ‖sN‖2 = ‖f − sN‖2 +
N∑
1

|cn|2, (cn = 〈f, ϕn〉)

Take the limit as N →∞. By (c), ‖f − sN‖2 → 0. Therefore,

‖f‖2 =
∞∑
1

|cn|2

Finally, for (d) =⇒ (a),

‖f‖2 = ‖f − sN‖2 +
N∑
1

|cn|2

Take the limit as N →∞, then by (d) the rightmost term tends to ‖f‖2 so that ‖f−sN‖2 →
0. Since sN ∈ VN ⊂ V , V is dense in H. �
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Proposition 2 Let ϕn be an orthonormal sequence in a Hilbert space H, and∑
|an|2 <∞,

∑
|bn|2 <∞

then

u =
∞∑

n=1

anϕn, v =
∞∑

n=1

bnϕn

are convergent series in H norm and

〈u, v〉 =
∞∑

n=1

anbn (6)

Proof. Let

uN =
N∑
1

anϕn; vN =
N∑
1

bnϕn.

Then for M < N ,

‖uN − uM‖2 =
N∑
M

|an|2 → 0 as M →∞

so that uN is a Cauchy sequence converging to some u ∈ H. Similarly, vN → v in H norm.
Finally,

〈uN , vN〉 =
N∑

j,k=1

〈ajϕj, bkϕk〉 =
N∑

j,k=1

ajbk〈ϕj, ϕk〉 =
N∑

j=1

ajbj

since 〈ϕj, fk〉 = 0 for j 6= k and 〈fj, fj〉 = 1. Taking the limit as N → ∞ and using the
continuity property (1), 〈uN , vN〉 → 〈u, v〉, gives (6). �

If H is a Hilbert space and {ϕn}∞n=1 is an orthonormal basis, then every element can be
written

f =
∞∑

n=1

anϕn (series converges in norm)

The mapping

{an} 7→
∑

n

anϕn

is a linear isometry from `2(N) to H that preserves the inner product. The inverse mapping
is

f 7→ {an} = {〈f, ϕn〉}
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It is also useful to know that as soon as a linear mapping between Hilbert spaces is an
isometry (preserves norms of vectors) it must also preserve the inner product. Indeed, the
inner product function (of two variables u and v) can be written as a function of the norm
function (of linear combinations of u and v). This is known as polarization:

Polarization Formula.

〈u, v〉 = a1‖u + iv‖2 + a2‖u + v‖2 + a3‖u‖2 + a4‖v‖2 (7)

with
a1 = i/2, a2 = 1/2, a3 = −(1 + i)/2, a4 = −(i + 1)/2

Proof.

‖u + iv‖2 = 〈u + iv, u + iv〉
= ‖u‖2 + 〈iv, u〉+ 〈u, iv〉+ ‖v‖2

= ‖u‖2 + i(〈v, u〉 − 〈u, v〉) + ‖v‖2

Similarly,
‖u + v‖2 = ‖u‖2 + (〈v, u〉+ 〈u, v〉) + ‖v‖2

Multiplying the first equation by i and adding to the second, we find that

i‖u + iv‖2 + ‖u + v‖2 = (i + 1)‖u‖2 + 2〈u, v〉+ (i + 1)‖v‖2

Solving for 〈u, v〉 yields (7). �
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