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18.103. Lecture 1: Introduction.
 

One of the main goals this course is to establish rules for the limiting behavior of functions 
so that we can deal with functions with as much confidence as we do real or complex numbers. 
Today we give a preview, without any proofs. 

Part 2. Fourier Analysis (starting about week 7). A complex-valued, periodic 
function f(x) of period 2π is represented by the Fourier series 

∞ 
f(x) = cne inx , cn ∈ C (1) 

n=−∞ 

The family 
e inx , n ∈ Z = {0, ±1, ±2, . . . } 

should be viewed as a basis for the infinite-dimensional vector space of periodic functions. 
The remarkably simple and practical formula of Fourier (from the early 1800s) for the coef­
ficients cn is  π1 −inxdxcn = f(x)e (2)

2π −π 

Formula (2) giving the correspondence f  → cn is the companion to Formula (1) which 
computes cn  → f . 

Consider the partial sum  
SN (x) = cne inx 

|n|≤N 

The main question in the second half of the course is whether and in what sense 

lim SN = f ? 
N→∞ 

The cleanest answer (among many) is that convergence works in the following average sense. 
Assume that 

∞ 
|cn|2 < ∞ 

n=−∞ 

then  π 

lim |f(x) − SN (x)|2 dx = 0 
N→∞ −π 

This conclusion is based on remarkably simple formulas based on the Pythagorean theorem. 
Define the length of a function in terms of its Fourier coefficients as 

�f� = · · · + |c−1|2 + |c0|2 + |c1|2 + · · · 

This gives a definition of the length of f because the correspondence given by (2) and (1) 
between f and the sequence of coefficients cn is one-to-one. This length can also be expressed 
directly in terms of f as follows. 
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π1 
Theorem (Parseval’s formula) |cn|2 = |f(x)|2dx 

2π −π n∈Z 

Because the series has a finite sum, its tail |cn|2 tends to zero. Hence
 
|n|>N
 

inx 2f − SN = cne =⇒ f − SN = |cn|2 −→ 0 as N →∞ 
|n|>N |n|>N 

In other words, by Parseval’s formula, the square mean distance from f to SN tends to zero: 

π 

|f(x) − SN (x)|2dx = 2π |cn|2 −→ 0, as N →∞ 
−π |n|>N 

Part 1. Lebesgue measure and integrals. The task in the first half of the course is to 
introduce Lebesgue measure and establish properties of the Lebesgue integral. Our textbook 
(Adams and Guillemin) introduces Lebesgue measure using motivation and examples from 
probability theory. An equally important motivation (that will only become clear in the 
second half) is that the systematic study of Fourier series requires the Lebesgue integral. The 
square mean convergence of Fourier series and Parseval’s formula cannot be stated accurately 
in proper generality without the Lebesgue integral and Lebesgue integrable functions f(x). 

Probability theory. A Bernoulli sequence is an infinite sequence of outcomes 

HTTHTTTH · · · 

of coin tosses with H representing heads and T representing tails. Assume that heads and 
tails are equally likely and that the tosses are independent of each other. Then the 8-letter 
initial sequence displayed has probability 2−8 as does each of the 28 possible words of length 
8 in the letters H and T . The first paradox we face is that the probability of any single 
infinite string is zero (the limit of 2−n as n →∞), whereas if we add up all possibilities we 
get 

0 = 1 ?? 

It turns out that this paradox is a real contradiction that has to be avoided. The collection 
of outcomes is uncountably infinite. (This is proved by the Cantor diagonal argument and is 
the subject of our first homework exercise.) We will have to give up on sums of probabilities 
with uncountably many terms. 

Given that some operations are illegal, our job will be to figure out what operations 
are legal and give meaningful probability values. Fortunately there are many meaningful 
questions we can answer. For n ≥ 0, consider 

Sn = number of heads minus number of tails in first n tosses 

The trajectory of Sn is known as a random walk (in one dimension, that is, on the integers 
Z). I graphed this for the example HTTHTTTH: S0 = 0, S1 = 1, S2 = 0, S3 = −1, etc. A 
statement referring to full, infinite strings can only make sense using a correct formulation 
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of probability on the uncountable collection of Bernoulli sequences. Here is an example that 
does make sense and has a coherent answer. 

Strong Law of Large Numbers. 

Sn
With probability 1, lim = 0 

n→∞ n 

Combining probability and Fourier analysis. After we have developed probability 
theory on Bernoulli sequences, using a correspondence with Lebesgue measure on the unit 
interval, we will discuss the Lebesgue integral and some Fourier analysis. Then we will use 
some Fourier analysis to prove more theorems in probability. By the end of the semester 
we will have all the tools to discuss the continuum limit of a (suitably scaled) random walk, 
namely Brownian motion. 

The first rigorous formulation of Brownian motion was given by Norbert Wiener (in the 
math department at MIT in the 1920s) before probability theory itself was on a fully rigorous 
footing! Brownian motion starting from B(0) = 0 is given on 0 ≤ t ≤ π by 

∞ 
sin kt 

B(t) = a0t + ak 
k 

k=1 

where the ak, k = 1, 2, . . . are independent, standard (mean 0, variance 1) normal random 
variables. (The coefficient a0 is also a normal random variable, but with a different variance, 
which we will figure out later. In lecture, for simplicity, I omitted a0 initially. Without the 
a0t term, B(t) returns to 0 at t = π and is known as a Brownian bridge.) 

Wiener showed that with probability 1, B(t) is continuous but not differentiable. Curi­
ously, with the help of Fourier series representations, even non-differentiable functions can 
be differentiated. The catch is that the answer is not a function. The derivative 

∞ 

dB/dt = ak cos kt 
k=0 

is known as “white noise.” With probability 1 the series on the right is not convergent. 
Although with probability 1 this series does not represent a function (much less a continuous 
function), it nevertheless has a good interpretation as a so-called “generalized function.” You 
have already seen one such generalized function in 18.03, namely the delta function. We will 
discuss generalized functions much later in the course. 

In Lecture 2, we will begin the systematic theory of Lebesgue measure, starting with the 
case of the unit interval, in tandem with probability theory for Bernoulli sequences, following 
the Adams-Guillemin text. 
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