18.103 Fall 2013

1. FOURIER SERIES, PART 1.

We will consider several function spaces during our study of Fourier series. When we talk
about LP((—m,)), it will be convenient to include the factor 1/27 in the norm:

™ 1/p
1= (55 / i)

In particular, the Lebesgue space L?((—, 7)) is a Hilbert space with inner product

5 |

The starting place for the theory of Fourier series is that the family of functions {e™®}°°
is orthonormal, that is

<€inx’eima}> _ 0’ n 7é m; <€inx’ einl’> — 1, n, me 7.

The Fourier coefficients of f are defined by
~ ) 1 4 )
f(n)=(f,e") = %/ fx)e "™ dx, ne€Z.

—00

(Z = {0,41,42, ...} represents the integers.) The definition of Fourier the coefficients f(n)
also makes sense for f € L'((—m,7)). The main issue is to find the ways in which the Fourier

series
> Fme
represents the function f.
The first basic remark is that for all f € L'((—m, 7)),

(1) |Fm)l < (1 flh
This is proved by putting the absolute value inside the integral:

1 [ . 1 [
~ |z | s@ean) < o [ i@l = £l

Let C*(R), k = 0, 1, 2, ..., denote the complex-valued functions that are k times con-
tinously differentiable on R. C(R) = C°(R) denotes continuous functions on R, and
f € C*¥R) if and only if f' € C*1(R). Denote by C*(R) the infinitely differentiable
functions on R.
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If the function f is periodic of period 27 (f(x +27) = f(x)), then f defines a function on
T = R/27Z, the quotient space of R under the equivalence relation z ~ 2’ if © — 2’ € 27Z.
We will use the notation C*(T) for C* functions on T, which are identified with 27-periodic
functions in C*(R). We will identify functions in LP((—x, 7)) with 27 periodic functions on

R and write LP(T).

The proof in the preceding set of lecture notes that C§°(R) is dense in LP(R), 1 < p < o0,
can be modified in a routine way to show that C*°(T) is dense in LP(T), 1 < p < oo.
Indeed, the density can be proved using C'™ functions that are truncated to be zero in a
small neighborhood of 7 (equivalent to —).

Proposition 1. If f € C*(T), then
[f(n)] < C/n

Proof. For n # 0,
IR ““df—/f (-lf)dx— IRCET

Exercise. Show that if f € C*(T), then

f)] < ¢/ + |n])*
Lemma 1. (Riemann-Lebesque Lemma) Suppose that h € L*(T). Then

Hence,

)| dz = || fll/In]

27r]n|

h(n) — 0 as |n| — oo

Proof. Let € > 0, and choose g € C'(T) so that
1P = gllerr) < e
By Proposition 1 g(n) — 0 as |n| — oo. Therefore,
limsup |2(n)| < limsup(|h(n) — §(n)| + [§(n)]) = limsup [2(n) — §(n)].

n—oo n—oo n—oo

Next note that using (1),
[h(n) = §(n)] <= |h = gl < e

Thus we have shown R
limsup |A(n)| < e.

n—oo

And taking the limit as € — 0 finishes the proof. U



For any f € L'(T), we define the partial sum of the Fourier series by
N
sy(x) = Z f(n)e™e.
n=—N
Substituting the formula for f(n) into this formula, we find

N
1 [ .
Sw(w)=§ / f(y) § e dy,
- n=—N

which we also write

sy(z) = %/W fly)Dy(x —y)dy with Dny(t) = Z e,

n=—N

The formula for sy can be written in more compact form using an important operation x
known as convolution.

(2) sn(z) = f* Dn(z)

Convolution. In general, for f and g in L'(T), we define the operation of convolution by
1 s 1 a+27

frglz) =5 / fglz —y)dy = — f)gle —y)dy

:27Ta

For such f and g Fubini’s theorem implies that f % g defines an integrable function. In
particular, f * g(x) is defined and finite for almost every x (and periodic of period 27). It’s
easy to see that convolution satisfies the distributive law, f*(g+h) = f* g+ f*h. One can
also confirm, using a change of variable, that the operation is commutative. In other words,

fogla) = g% fla) = /Wg(y)f(x—y)dy

=5 g
There will be more about convolution later.

Theorem 1. (Dini Test) If f € L'(T), and for some fived
/7r |fx+y) — fz)]

. Y|

dy < o0,

then sy(z) — f(x) as N — oo.
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Proof. (Note that although f is merely an L' function, the hypothesis specifies the value of
f(z) uniquely.) To prove the theorem observe first that

™ s N s
/ Dn(y) dy =/ < > ei”“’) dy =/ dy =27
-7 —T \p=—N -7

Therefore,
swl@) = £(2) = Dy + fa) = f@) = o= [ Daly)fe—y)dy— o= | Dulpfa)dy
=5 [ Ue=u = re)Dywy
Furthermore,
N i(N+1)y —iNy
Dn(y) = nz_:N e = - oy _ 16
Thus A A
SN(:C) - f(LE) = h:}c(N + 1) - hx<_N)
with ( ) @
flea—y) — fl=
hiﬂ(y> - eiy . 1

Since |e® — 1| > 2|y|/m for all |y| < 7, the hypothesis implies
" T (Tfle—y) - [z
/ Ihx(y)ldy§§/ 17 ‘; gy < oo

Therefore, by the Riemann-Lebesgue lemma (Lemma 1)

lim ho(N +1) — hy(=N) =0

and the theorem is proved. 0

Corollary 1. If f € CI(T), then
a) sy(z) — f(x) as N — oo for allx € T.
b) lIsw — fllp =0 as N — o0, 1 <p < oo.

Proof. Let M = max|f’|. Then |f(z —y) — f(z)| < M|y| so that

|mwnsV“;jfj“ﬂgme



In particular, by the Dini test (Theorem 1), sy(z) — f(x). Furthermore, by (1), we have
[sv(@)] < V(N + D] + o (=N)| < 2[lhe |l < M

so that |sy(z) — f(z)|P < (M7 + |f(x)])? is a majorant. By the dominated convergence

theorem,
™

A}im lsn(z) — f(z)Pdx =0

O

Exercise. For each o, 0 < o < 1, define C*(T) as the collection of 27 periodic functions on
R satisfying

[f(2) = fW) < Clz —y|*, forall z, yeR
Show that the conclusion of Corollary 1 holds for all f € C*(T).

Corollary 2. The functions e™® n € Z form an orthonormal basis for L*>(T). In particular,
for all f € L*(T),

lm [lsy— fllo =0, and [f3 =3 |fm)P

nez

Proof. Corollary 1 shows that the closure of V in the L?(T) distance includes all functions
in C*(T). Our density theorem says, in particular, that C'(T) is dense in L?(T). Thus
V is dense in L*(T), and this is condition (a) of our theorem characterizing orthonormal
bases. 0
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