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1. Fourier Series, Part 1.

We will consider several function spaces during our study of Fourier series. When we talk
about Lp((−π, π)), it will be convenient to include the factor 1/2π in the norm:

‖f‖p =

(
1

2π

∫ π

−π
|f(x)|p dx

)1/p

.

In particular, the Lebesgue space L2((−π, π)) is a Hilbert space with inner product

〈f, g〉 =
1

2π

∫ π

−π
f(x)g(x) dx .

The starting place for the theory of Fourier series is that the family of functions {einx}∞n=−∞
is orthonormal, that is

〈einx, eimx〉 = 0, n 6= m; 〈einx, einx〉 = 1, n, m ∈ Z.

The Fourier coefficients of f are defined by

f̂(n) = 〈f, einx〉 =
1

2π

∫ π

−π
f(x)e−inx dx, n ∈ Z.

(Z = {0,±1,±2, . . . } represents the integers.) The definition of Fourier the coefficients f̂(n)
also makes sense for f ∈ L1((−π, π)). The main issue is to find the ways in which the Fourier
series ∑

f̂(n)einx

represents the function f .

The first basic remark is that for all f ∈ L1((−π, π)),

(1) |f̂(n)| ≤ ‖f‖1
This is proved by putting the absolute value inside the integral:

|f̂(n)| =
∣∣∣∣ 1

2π

∫ π

−π
f(x)e−inx dx

∣∣∣∣ ≤ 1

2π

∫ π

−π
|f(x)| dx = ‖f‖1 .

Let Ck(R), k = 0, 1, 2, . . . , denote the complex-valued functions that are k times con-
tinously differentiable on R. C(R) = C0(R) denotes continuous functions on R, and
f ∈ Ck(R) if and only if f ′ ∈ Ck−1(R). Denote by C∞(R) the infinitely differentiable
functions on R.
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If the function f is periodic of period 2π (f(x+ 2π) = f(x)), then f defines a function on
T = R/2πZ, the quotient space of R under the equivalence relation x ∼ x′ if x− x′ ∈ 2πZ.
We will use the notation Ck(T) for Ck functions on T, which are identified with 2π-periodic
functions in Ck(R). We will identify functions in Lp((−π, π)) with 2π periodic functions on
R and write Lp(T).

The proof in the preceding set of lecture notes that C∞0 (R) is dense in Lp(R), 1 ≤ p <∞,
can be modified in a routine way to show that C∞(T) is dense in Lp(T), 1 ≤ p < ∞.
Indeed, the density can be proved using C∞ functions that are truncated to be zero in a
small neighborhood of π (equivalent to −π).

Proposition 1. If f ∈ C1(T), then

|f̂(n)| ≤ C/|n|

Proof. For n 6= 0,∫ π

−π
f(x)e−inx dx =

∫ π

−π
f(x)

d

dx

(
e−inx

−in

)
dx = −

∫ π

−π
f ′(x)

e−inx

−in
dx

Hence,

|f̂(n)| ≤ 1

2π|n|

∫ π

−π
|f ′(x)| dx = ‖f ′‖1/|n|

Exercise. Show that if f ∈ Ck(T), then

|f̂(n)| ≤ C/(1 + |n|)k

Lemma 1. (Riemann-Lebesgue Lemma) Suppose that h ∈ L1(T). Then

ĥ(n)→ 0 as |n| → ∞

Proof. Let ε > 0, and choose g ∈ C1(T) so that

‖h− g‖L1(T) ≤ ε.

By Proposition 1 ĝ(n)→ 0 as |n| → ∞. Therefore,

lim sup
n→∞

|ĥ(n)| ≤ lim sup
n→∞

(|ĥ(n)− ĝ(n)|+ |ĝ(n)|) = lim sup
n→∞

|ĥ(n)− ĝ(n)|.

Next note that using (1),

|ĥ(n)− ĝ(n)| ≤= ‖h− g‖L1(T) ≤ ε.

Thus we have shown
lim sup
n→∞

|ĥ(n)| ≤ ε.

And taking the limit as ε→ 0 finishes the proof. �
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For any f ∈ L1(T), we define the partial sum of the Fourier series by

sN(x) =
N∑

n=−N

f̂(n)einx.

Substituting the formula for f̂(n) into this formula, we find

sN(x) =
1

2π

∫ π

−π
f(y)

N∑
n=−N

ein(x−y) dy,

which we also write

sN(x) =
1

2π

∫ π

−π
f(y)DN(x− y) dy with DN(t) =

N∑
n=−N

eint.

The formula for sN can be written in more compact form using an important operation ∗
known as convolution.

(2) sN(x) = f ∗DN(x)

Convolution. In general, for f and g in L1(T), we define the operation of convolution by

f ∗ g(x) =
1

2π

∫ π

−π
f(y)g(x− y) dy =

1

2π

∫ a+2π

a

f(y)g(x− y) dy

For such f and g Fubini’s theorem implies that f ∗ g defines an integrable function. In
particular, f ∗ g(x) is defined and finite for almost every x (and periodic of period 2π). It’s
easy to see that convolution satisfies the distributive law, f ∗ (g+h) = f ∗ g+f ∗h. One can
also confirm, using a change of variable, that the operation is commutative. In other words,

f ∗ g(x) = g ∗ f(x) =
1

2π

∫ π

−π
g(y)f(x− y) dy

There will be more about convolution later.

Theorem 1. (Dini Test) If f ∈ L1(T), and for some fixed x∫ π

−π

|f(x+ y)− f(x)|
|y|

dy <∞,

then sN(x)→ f(x) as N →∞.
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Proof. (Note that although f is merely an L1 function, the hypothesis specifies the value of
f(x) uniquely.) To prove the theorem observe first that∫ π

−π
DN(y) dy =

∫ π

−π

(
N∑

n=−N

einy

)
dy =

∫ π

−π
dy = 2π

Therefore,

sN(x)− f(x) = DN ∗ f(x)− f(x) =
1

2π

∫ π

−π
DN(y)f(x− y) dy − 1

2π

∫ π

−π
DN(y)f(x) dy

=
1

2π

∫ π

−π
(f(x− y)− f(x))DN(y) dy

Furthermore,

DN(y) =
N∑

n=−N

einy =
ei(N+1)y − e−iNy

eiy − 1

Thus

sN(x)− f(x) = ĥx(N + 1)− ĥx(−N)

with

hx(y) =
f(x− y)− f(x)

eiy − 1
.

Since |eiy − 1| ≥ 2|y|/π for all |y| ≤ π, the hypothesis implies∫ π

−π
|hx(y)| dy ≤ π

2

∫ π

−π

|f(x− y)− f(x)|
|y|

dy <∞

Therefore, by the Riemann-Lebesgue lemma (Lemma 1)

lim
N→∞

ĥx(N + 1)− ĥx(−N) = 0

and the theorem is proved. �

Corollary 1. If f ∈ C1(T), then

a) sN(x)→ f(x) as N →∞ for all x ∈ T.

b) ‖sN − f‖p → 0 as N →∞, 1 ≤ p <∞.

Proof. Let M = max |f ′|. Then |f(x− y)− f(x)| ≤M |y| so that

|hx(y)| ≤
∣∣∣∣f(x− y)− f(x)

eiy − 1

∣∣∣∣ ≤ πM/2



5

In particular, by the Dini test (Theorem 1), sN(x)→ f(x). Furthermore, by (1), we have

|sN(x)| ≤ |ĥx(N + 1)|+ |ĥx(−N)| ≤ 2‖hx‖1 ≤Mπ

so that |sN(x) − f(x)|p ≤ (Mπ + |f(x)|)p is a majorant. By the dominated convergence
theorem,

lim
N→∞

∫ π

−π
|sN(x)− f(x)|p dx = 0

�

Exercise. For each α, 0 < α < 1, define Cα(T) as the collection of 2π periodic functions on
R satisfying

|f(x)− f(y)| ≤ C|x− y|α, for all x, y ∈ R

Show that the conclusion of Corollary 1 holds for all f ∈ Cα(T).

Corollary 2. The functions einx, n ∈ Z form an orthonormal basis for L2(T). In particular,
for all f ∈ L2(T),

lim
N→∞

‖sN − f‖2 = 0, and ‖f‖22 =
∑
n∈Z

|f̂(n)|2.

Proof. Corollary 1 shows that the closure of V in the L2(T) distance includes all functions
in C1(T). Our density theorem says, in particular, that C1(T) is dense in L2(T). Thus
V is dense in L2(T), and this is condition (a) of our theorem characterizing orthonormal
bases. �
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