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1 Brownian Motion

Random Walks. Let S0 = 0, Sn = R1 +R2 + · · ·+Rn, with Rk the Rademacher functions.
We consider Sn to be a path with time parameter the discrete variable n. At each step the
value of S goes up or down by 1 with equal probability, independent of the other steps. Sn
is known as a random walk.

To find the rescaled, continuum limit of a random walk, define

fn(k/n) = Sk/
√
n, k ∈ Z

and for k/n ≤ t ≤ (k + 1)/n, define f(t) to be linear. For t = k/n, the variance is

Var (fn(t)) = E(S2
k/n) = E((R1 + · · ·+Rk)

2/n) = k/n = t

The central limit theorem implies that fn(t) tends in probability law to a gaussian random
variable. In other words,

lim
n→∞

P (a < fn(t) < b) =

∫ b

a

e−x
2/2t

√
2πt

dx

For each n, there is a unique k = k(n, t) such that k/n ≤ t ≤ (k + 1)/n, so that Sk/
√
n ≤

fn(t) ≤ Sk+1/
√
n. Since both Sk/

√
n and Sk+1/

√
n tend in law to the gaussian with variance

t as n→∞, it’s not hard to show that fn(t) does so as well. More generally, we can describe
the probability distribution of the entire path, that is, what happens at many different times.

Theorem 1 Let 0 ≤ t0 < t1 < t2 < · · · < tm and let I1 × I2 × · · · Im ⊂ Rm be a rectangle
(product of intervals). Let σj > 0 be such that σ2

j = tj − tj−1. Then

lim
n→∞

P [(fn(t1)− fn(t0), fn(t2)− fn(t1), . . . , fn(tm)− fn(tm−1)) ∈ I1 × · · · Im]

=

∫
I1×···×Im

m∏
j=1

gσj(xj) dx1 · · · dxm

Proof. If kj = kj(n) is the integer such that kj/n ≤ tj < (kj + 1)/n, then

f(tj)− f(tj−1) = Xj +O(1/
√
n) with Xj = (Skj − Skj−1

)/
√
n
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For each j = 1, . . . ,m, the central limit theorem implies Xj tends to a gaussian with mean
zero, variance σ2

j . Moreover, because for different j, Xj depends on the Rademacher functions
R`, kj−1 + 1 ≤ ` ≤ kj, which do not overlap with the Rademacher functions used to define
the other Xj, these m random variables are independent. Hence the limit of the joint
distribution is the product of the individual limits, the appropriate product distribution of
gaussians. Therefore, the m variables fn(tj)− fn(tj−1) = Xj +O(1/

√
n) converge jointly as

n→∞ to the same limit. This proves Theorem 1.

The rest of this section is devoted to explaining how to describe the limiting paths of the
random walk, a continuum stochastic process called Brownian motion. Brownian motion is
a function

B : Ω× R+ → R, (ω, t) ∈ Ω× R+

First, a few words about notation. When we display the dependence on ω ∈ Ω, we will put
it into a subscript, Bω(t). The main focus is on Bω, as a random function of t. The sample
space Ω is rarely mentioned in probability theory, and the dependence of B on ω is omitted,
so that one usually usually writes

B(t) = Bω(t).

The idea of trying to define B(t) as a function of a continuous variable t, as opposed to just
a discrete time variable n, is in the same spirit as the overall motivation for differential and
integral calculus. Continuum formulas are more transparent and capture better the essence
of the phenomenon. For example, we will show that for almost every ω, Bω(t) is continuous
in t. (Although we won’t prove anything this precise, it turns out that the Brownian paths
are almost surely of the Hölder class Cα for all α < 1/2, almost surely nowhere differentiable,
and almost never Cα for α ≥ 1/2. In higher level courses, one goes on to study so-called
stochastic differential equations, in which dB(t) the differential of B(t) plays a role.)

The sample space Ω is barely mentioned because we can identify ω ∈ Ω with Bω a
continuous function. But there is one remark we need to make about the sigma field F . F
will be defined as the sigma field generated by sets of the form

{ω ∈ Ω : (Bω(t1), . . . , Bω(tm)) ∈ I1 × · · · × Im}

Let 0 ≤ t0 < t1 < · · · tm, and let R = I1 × I2 × · · · × Im. Our goal is to find Bω(t) so that

lim
n→∞

P [(fn(t1), . . . , fn(tm)) ∈ R] = P [(B(t1), . . . , B(tm)) ∈ R] (1)

This uniquely specifies the probability law of B(t) on F .

To get a picture of what (1) means, imagine we can simulate as many trials of B(t) as
we like on an m ×m pixel video screen. (This turns out to be easy to carry out using the
Fourier series formula for B(t) due to Wiener and any fast Fourier transform package, such
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as the ones contained in Maple, Matlab, or Mathematica.) Suppose that tj = j/m (pixel
width 1/m) and Ij are chosen from intervals of the form [Ck/m,C(k+1)/m), corresponding
to pixel height. The event (B(t1), . . . , B(tm)) ∈ I1× · · · × Im specifies the graph to accuracy
1/m, which we can think of as the level of resolution of the pixels. Thus (1) says that the
collection of graphs obtained by simulating B(t) look exactly the same as the collection of
graphs simulating the functions fn(t) (up to some negligible probability for n sufficiently
large).

Since B(0) = 0, the knowledge of the increments B(tj) − B(tj−1) is the same as the
knowledge of the values of B(tj). Let σj > 0, σ2

j = tj − tj−1, We can always let t0 = 0, so
Theorem 1 implies (1) is equivalent to

P [(B(t1)−B(t0), . . . , B(tm)−B(tm−1)) ∈ R] =

∫
R

m∏
j=1

gσj(xj) dx1 · · · dxm (2)

for all R = I1 × · · · × Im
The main issue is to show that B(t) exists. In around 1920, Norbert Wiener gave a for-

mula for Brownian motion as a random Fourier series. Let ak, k = 0, 1, . . . , be independent
mean 0, variance 1 Gaussians. Let

W (t) = c0a0t+ c1

∞∑
k=1

ak
sin kt

k
, 0 ≤ t ≤ π. (3)

with c0 =
√

1/π and c1 =
√

2/π. The rest of this section is devoted to proving Wiener’s
theorem.

Theorem 2 Let W be given by (3). Then W (0) = 0 and

a) B(t) = W (t) satisfies (2) (or equivalently (1)) on 0 ≤ t ≤ π.

b) W is almost surely continuous in t.

To obtain Brownian motion on all t ≥ 0, take a countable number of independent copies of
Wn(t) and let

B(t) =


W1(t), 0 ≤ t ≤ π

W1(π) +W2(t− π), π ≤ t ≤ 2π

W1(π) +W2(π) +W2(t− 2π), 2π ≤ t ≤ 3π

etc.

We begin the proof of Theorem 2 with a lemma about gaussian random variables.
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Proposition 1 If Xk, are independent gaussians with mean 0 and variance σ2
k with∑

k

σ2
k <∞

then X1 + X2 + · · · converges in L2(Ω) to a gaussian random variable with mean zero and

variance σ2 =
∑
k

σ2
k.

Proof. For finite sums we have

E(e−iξ(X1+X2+···+Xn)) =
n∏
k=1

E(e−iξXk)

=
n∏
k=1

e−σ
2
kξ

2/2 = e−
∑n

k=1 σ
2
kξ

2/2

By the uniqueness of the Fourier transform of measures, S = X1 + · · ·+Xn is gaussian with
variance

∑n
k=1 σ

2
k.

For the infinite sum, consider first the partial sums

Sn = X1 + · · ·+Xn

For n > m,

E(|Sn − Sm|2) =
n∑

k=m+1

E(X2
k) =

n∑
k=m+1

σ2
k

which tends to zero as m→∞. Therefore, Sn converges in L2(Ω) to a random variable S.

Denote by ρ2
n =

∑n
1 σ

2
k. Fix ε > 0.

P (a < S < b) ≤ P (a− ε < Sn < b+ ε) + P (|S − Sn| ≥ ε)

and

P (|S − Sn| ≥ ε) = P (|S − Sn|2 ≥ ε2) ≤ 1

ε2
‖S − Sn‖2

L2(Ω) → 0

as n→∞. Therefore, since ρn → σ,

P (a < S < b) ≤ lim
n→∞

∫ b+ε

a−ε
gρn(x)dx =

∫ b+ε

a−ε
gσ(x)dx

Since ε > 0 was arbitrary, we have

P (a < S < b) ≤
∫ b

a

gσ(x)dx
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A similar argument gives the same lower bound, proving the proposition.

Covariance. The covariance of two random variables X and Y is defined as

Cov (X, Y ) = E((X − EX)(Y − EY ))

Note that
Cov (

∑
j

Xj,
∑
k

Xk) =
∑
j,k

Cov (Xj, Xk)

The polarization method says that to determine the covariance, of a family X1, X2, . . . , Xn

of random variables is suffices to know

Var (
∑
j

ajXj) =
∑
j,k

ajakCov (Xj, Xk)

for all choices of aj.

The mean and variance determine the distribution of a single gaussian random variable.
The analogous statement for several variables involves the covariance matrix Cov (Xj, Xk).
We will formulate it as follows.

Lemma 1 Let X = (X1, . . . , Xm) be independent gaussian random variables with mean zero.
Let A = (ajk) be an invertible (real-valued) matrix and define Y = (Y1, . . . , Ym) by

Yj =
m∑
k=1

ajkXk.

Then for every a = (a1, . . . , am) ∈ Rm,

a · Y =
m∑
j=1

ajYj

is a gaussian random variable with mean 0. Conversely, if Z = (Z1, . . . , Zm) are random
variables such that for every a = (a1, . . . , am),

a · Z =
m∑
j=1

ajZj

is a gaussian random variable with mean 0 and covariances coincide with those of Y ,

E(ZjZk) = E(YjYk)

then the joint distribution of Z = (Z1, . . . , Zm) is the same as that of Y . In other words,

P (Z ∈ E) = P (Y ∈ E) for all Borel sets E ⊂ Rm

Moreover, A−1Z has the same probability distribution as X.
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Proof. Denote by V the covariance matrix of X = (X1, . . . , Xm), that is vjk = E(XjXk).
Then V is diagonal with entries σ2

1, . . . , σ2
m (the variance of X1, . . . , Xm, respectively) along

the diagonal. Denote the covariance matrix of Y by C = (cjk), that is, cjk = Cov (Yj, Yk) =
E(YjYk). Then

cjk = E(YjYk) =
∑
`

aj`ak`σ
2
` =⇒ C = (cjk) = AV AT

The random variable a·Y is a linear combination of the independent gaussians Xj. Therefore
by Proposition 1, a · Y is a gaussian random variable with mean zero. The variance of a · Y
is

v(a) = E((a · Y )2) =
m∑

j,k=1

ajakcjk

The mean and variance specify the distribution of a · Y completely, and it follows from the
formula for the Fourier transform of the gaussian that

E
(
e−ita·Y

)
= e−v(a)t2/2

Specializing to t = 1 and a = ξ we find the Fourier transform of µY , the joint probability
distribution of Y on Rm, is∫

Rm

e−iξ·x dµY (x) = E
(
e−iξ·Y

)
= e−v(ξ)/2

If Z has the property that a · Z is gaussian with mean zero and the variances E(ZjZk) =
E(YjYk) = cjk, then the same reasoning leads to the conclusion that the Fourier transform
on Rm of µZ the joint probability distribution of Z is also equal to e−v(ξ)/2. Therefore, by
uniqueness of the Fourier transform for measures, µY = µZ . This concludes the proof.

We make use of Lemma 1 in a special case, in order to characterize B(t).

Proposition 2 Suppose that B(t) is such that B(0) = 0. Then B satisfies property (2) if
and only if

a)
m∑
j=1

ξjB(tj) is a Gaussian random variable with mean 0.

b) E(B(s)B(t)) = s ∧ t, (s ∧ t = min(s, t)).

Proof. Assume that B satisfies (2). To prove (a), note that for any ξj one can find bj such
that ∑

j

ξjB(tj) = ξ1(B(t1)−B(0)) +
∑
`

b`(B(t`+1)−B(t`))
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The latter sum is a sum of independent gaussians, so the fact that the sum is gaussian follows
from Proposition 1. To prove (b), note first that (2) implies B(s) is gaussian with mean 0
and variance s, i. e., E(B(s)2) = s. More generally, for s ≤ t,

E(B(s)B(t)) = E(B(s)(B(t)−B(s))) + E(B(s)2) = 0 + E(B(s)2) = s,

because independence gives E(B(s)(B(t)−B(s))) = E(B(s))E((B(t)−B(s))) = 0.

Conversely, suppose C(t) satisfies a) and b) and C(0) = 0. Define B by B(0) = 0 and
(2), then we have just shown that X = (B(t1)− B(t0), . . . , B(tm)− B(tm−1)) is a sequence
of independent gaussians of mean zero, and Y = (B(t1), . . . , B(tm)) has correlation matrix
E(B(tj)B(tk)) = tj∧tk. Therefore Z = (C(t1), . . . , C(tm)) satisfies the hypotheses of Lemma
1 with the same correlation matrix as Y , and by Lemma 1, Z satisfies (2).

We are now ready to prove part (a) of Theorem 2. Let 0 ≤ t0 < t1 < · · · < tm ≤ π. The
fact that

m∑
j=1

ξjW (tj)

is gaussian of mean zero follows from Proposition 1. The fact that W (0) = 0 is obvious.
According to Proposition 2 it remains to show that for 0 ≤ s ≤ t ≤ π,

E(W (s)W (t)) = s ∧ t

We could do this all at once, but we carry out a slightly simpler calculation E(W (t)2) = t
first.

Proposition 1 implies W (t) is gaussian with mean zero and variance

E(W (t)2) = c2
0t

2 + c2
1

∞∑
k=1

sin2(kt)

k2

The case t = π identifies c0:
π = c2

0π
2 =⇒ c0 = 1/

√
π

Denote

u(t) =
∞∑
k=1

sin2(kt)

k2

Then

u′(t) =
∞∑
k=1

2k sin(kt) cos(kt)

k2
=
∞∑
k=1

sin(2kt)

k

and

u′′(t) ∼
∞∑
k=1

2k cos(2kt)

k
= 2

∞∑
k=1

cos(2kt) = −1 +
∑
k∈Z

e2ikt
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The last series is periodic of period π. The standard delta function of period π has Fourier
coefficients

1

π

∫ π/2

−π/2
δ(t)e−2int dt = 1/π

Thus
u′′(t) = −1 + π

∑
n∈Z

δ(t− nπ)

The function u′(t) is odd and we can find its formula by integrating u′′(t). We get

u′(t) =

{
π/2− t 0 < t < π

−π/2− t −π < t < 0

One way to check your arithmetic is to evaluate u′(t) places where we know what to expect.
For instance,

u′(±π/2) =
∞∑
k=1

sin(±2kπ/2)

k
= 0

and the formula above gives u′(π/2) = π/2− π/2 = 0 and u′(−π/2) = −π/2− (−π/2) = 0.
(You can also confirm the periodicity of period π.)

Next integrate u′(t) to get u(t), which is even and satisfies u(0) = 0. Thus,

u(t) =

{
(π/2)t− t2/2 0 ≤ t ≤ π

−(π/2)t− t2/2 −π ≤ t ≤ 0

You can check your arithmetic in this case by confirming that u(t) is continuous and periodic
of period 2π so that the values at t = ±π must agree. (The series is absolutely convergent,
so u must be continuous everywhere.)

Now inserting the values of u(t) into the formula for the variance we have for 0 ≤ t ≤ π,

E(W (t)2) = (1/π)t2 + c2
1[(π/2)t− t2/2] = t

provided that c1 =
√

2/π.

Now let’s do the full calculation, which is very similar.

E(W (s)W (t)) = c2
0st+ c2

1

∞∑
k=1

sin(ks) sin(kt)

k2

Since sinA sinB =
1

2
[cos(A−B)− cos(A+B)],

∞∑
k=1

sin(ks) sin(kt)

k2
=

1

2

∞∑
k=1

cos(k(s− t))− cos(k(s+ t))

k2
=

1

4
[v(s− t)− v(s+ t)]
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with

v(t) = 2
∞∑
k=1

cos(kt)

k2

We evaluate v(t) by a similar procedure to the one above.

v′(t) = −2
∞∑
k=1

sin(kt)

k

v′′(t) ∼ −2
∞∑
k=1

cos kt = 1−
∑
k∈Z

eikt

This time v′′ has period 2π and

1−
∑
k∈Z

eikt = 1− 2π
∑
n∈Z

δ(t− 2πn)

Integrating, the odd function v′(t) is given by

v′(t) =

{
−π + t 0 < t < π

π + t −π < t < 0

Integrating a second time,

v(t)− v(0) = −π|t|+ t2/2, |t| ≤ π

We could calculate v(0), but we only need difference v(s− t)− v(s+ t), so the value is not
relevant. If we extend v(t)− v(0) as a periodic function of period 2π, then we get

v(t)− v(0) = −πt+ t2/2, 0 ≤ t ≤ 2π

(We need this range in order to evaluate v(s+ t).)

Substituting the formula for v(t)− v(0), we obtain for 0 ≤ s ≤ t ≤ π,

E(W (s)W (t)) = c2
0st+

1

4
c2

1[v(s− t)− v(s+ t)]

=
st

π
+

1

2π
[−π(t− s) + (t− s)2/2− (−π(s+ t) + (s+ t)2/2)]

= s

This finishes the proof of part (a) of Theorem 2.

To get started with part (b) we need some lemmas.
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Lemma 2 If ak are mean zero variance 1 gaussians, then

E(|ai1ai2ai3ai4|) ≤ E(|a1|4) = 3 <∞

Proof. All we really care about is that this is finite, which is easy because all the distributions
involved are rapidly decreasing. But we can also give an explicit bound as follows. For
equidistributed random variables, applying the Schwarz inequality twice,

E(X1X2X3X4) ≤ [E(|X1X2|2)]1/2[E(|X3X4|2)]1/2 ≤
4∏
j=1

[E(|Xj|4)1/4 = E(|X1|4)

One can also get this by applying a version of Hölder’s inequality with several factors.

E(|ajaj′akak′|) ≤ E(|a1|4) <∞

E(a4
1) = 3 is calculated as follows. (We only need finiteness, but this calculation is a nice

trick to know.) Change of variables of the formula saying the the standard gaussian has
integral 1 to get ∫ ∞

−∞

e−λx
2/2

√
2π

dx = λ−1/2.

Differentiate with respect to λ to obtain∫ ∞
−∞

(−x2/2)
e−λx

2/2

√
2π

dx = −(1/2)λ−3/2

Differentiate a second time to get∫ ∞
−∞

(−x2/2)2 e
−λx2/2
√

2π
dx = (1/2)(3/2)λ−5/2

Thus, E(a2
1) = 1, E(a4

1) = 3 and, more generally, E((a1)2n) = (2n− 1)(2n− 3) · · · 3 · 1.

Lemma 3 For m ≥ 1 and 0 ≤ β ≤ 2,

Rβ(m) =

∫ 1

0

rm(1− r)β dr ≤ 100m−1−β

Proof. This integral can be evaluated in terms of what is known as Euler’s beta integral.
The answer is a product of gamma functions and the asymptotics are easy to read off from
Stirling’s formula. We won’t rely on any of that, but rather prove the upper bound directly.
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For 1− (k + 1)/m ≤ r ≤ 1− k/m,

rm(1− r)β ≤ (1− k/m)m[(k + 1)/m]β ≤ e−k[(k + 1)/m]β

Therefore, ∫ 1

0

rm(1− r)β dr ≤ 1

m

m−1∑
k=0

e−k[(k + 1)/m]β

= m−1−β
m−1∑
k=0

(k + 1)βe−k

≤ m−1−β
∫ ∞

0

(x+ 2)2e−x dx ≤ 10m−1−β

Let

F (z) =
∞∑
k=1

akz
k/k

with ak independent gaussians with mean zero and variance 1. Note that

B(t) = c0a0t+ c1

∞∑
k=1

ak
sin(kt)

k
= c0a0t+ c1ImF (eit)

In order to show that B(t) is almost surely continuous, it suffices to show the same for F (eit).
This is accomplished by estimating F (z) in |z| < 1. Note that

Fx(z) =
∂

∂x
F (z) =

∞∑
j=0

aj+1z
j

since for z = x+ iy, (∂/∂x)z = 1. Moreover, since (∂/∂y)z = i, we also have Fy = −iFx and

1

2
|∇F |2 = |Fx|2 =

∣∣∣∣∣
∞∑
j=0

aj+1z
j

∣∣∣∣∣
2

=
∞∑

j,j′=0

aj+1aj′+1z
j z̄j
′

Lemma 4 For any β > 1,

E
∫ 2π

0

∫ 1

0

|∇F (reit)|4(1− r)βr dr dt <∞,

and, consequently ∫ 2π

0

∫ 1

0

|∇F (reit)|4(1− r)βr dr dt <∞,

almost surely.
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Proof. Think of the expectation as a triple integral (over ω ∈ Ω, the probability sample) and
r and t. The monotone convergence theorem implies

E
∫ 2π

0

∫ 1

0

|∇F (reit)|4(1− r)βr dr dt = lim
r0→1−

E
∫ 2π

0

∫ r0

0

|∇F (reit)|4(1− r)βr dr dt

Therefore it suffices to bound the integral restricted to 0 ≤ r ≤ r0 < 1, uniformly as r0 → 1.

Next, apply Fubini’s theorem (justified subsequently)

E
∫ 2π

0

∫ r0

0

|∇F (reit)|4(1− r)βr dr dt

= E
∫ 2π

0

∫ r0

0

∞∑
j,j′,k,k′=0

ajaj′akak′r
j+j′+k+k′ei(j−j

′+k−k′)t(1− r)βr dr dt

=

∫ 2π

0

∫ r0

0

∞∑
j,j′,k,k′=0

E(ajaj′akak′)r
j+j′+k+k′ei(j−j

′+k−k′)t(1− r)βr dr dt

= 4π

∫ 2π

0

∫ r0

0

∞∑
j,k=0

E(a2
ja

2
k)r

2j+2k+1(1− r)β dr

≤ 12π

∫ 1

0

∞∑
j,k=0

r2j+2k+1(1− r)β dr

= 12π
∞∑

j,k=0

Rβ(2j + 2k + 1)

≤ C
∞∑

j,k=0

1

(2j + 2k + 1)1+β
≈
∫
x∈R2

dx

(1 + |x|)1+β
<∞

provided β > 1, so that the exponent 1 + β > 2. We need to justify Fubini’s theorem so as
to bring the expectation inside the integrals and the sum. It is in order to justify this step
that the integral was restricted to 0 ≤ r ≤ r0. In fact,∫ 2π

0

∫ r0

0

∞∑
j,j′,k,k′=0

E|ajaj′akak′rj+j
′+k+k′ei(j−j

′+k−k′)t|(1− r)βr dr dt <∞

By Lemma 2, E(|ajaj′akak′ |) ≤ 3. Moreover,∫ 2π

0

∫ r0

0

∞∑
j,j′,k,k′=0

rj+j
′+k+k′+13(1− r)β dr dt ≤ 6π

∞∑
j,j′,k,k′=0

rj+j
′+k+k′

0

=
6π

(1− r0)4
<∞
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For the next step we need the mean value property for harmonic functions. If u is
harmonic in |z| < 1, and continuous on |z| ≤ 1, then for 0 ≤ r < 1,

u(reit) =
∑
n∈Z

anr
|n|eint

Integrating in t,
1

2π

∫ 2π

0

u(reit) dt = a0 = u(0)

Now integrating with respect to r on 0 ≤ r ≤ ρ ≤ 1,

1

2π

∫ 2π

0

∫ ρ

0

u(reit) rdr dt =

∫ ρ

0

u(0) rdr = u(0)ρ2/2

Thus

u(0) =
1

πρ2

∫ ρ

0

∫ 2π

0

u(reit) rdr dt =
1

πρ2

∫
|z|≤ρ

u(z) dxdy

where z = x+ iy. A similar argument (or a change of variable) shows that if u is harmonic
in |z − z0| ≤ ρ, then

u(z0) =
1

πρ2

∫
|z−z0|≤ρ

u(z) dxdy (Mean value property) (4)

We now apply (4) to ∇F . Almost surely,

C∗ =

∫ 2π

0

∫ 1

0

|∇F (reit)|4(1− r)βr dr dt <∞

Let α = 1 − (2 + β)/4. For F satisfying the bound above, we will show that there is a
constant C depending on C∗ = C∗(F ) such that for all z in the unit disk,

|∇F (z)| ≤ C(1− |z|)−1+α (5)

We will then deduce Hölder continuity with exponent α. Since β is any real number greater
than 1, we see that the Hölder exponent of W (t) at least α for any α < 1/4. (Estimates
using higher powers than |∇F |4 and higher moments of the gaussian coefficients ak(ω) can
be used to show that W is Hölder continuous for any exponent α < 1/2.)

Let |z0| = r0, and let 1− r0 = 2ρ. Then

|∇F (z0)| ≤ 1

πρ2

∫
|z−z0|≤ρ

|∇F (z)| dxdy ≤
(

1

πρ2

∫
|z−z0|≤ρ

|∇F (z)|4 dxdy
)1/4
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On the disk |z − z0| ≤ ρ, |z| = r ≤ 1− ρ. Therefore,∫
|z−z0|≤ρ

|∇F (z)|4 dxdy ≤ 10ρ−βC∗

It follows that
|∇F (z0)| ≤ (10C∗ρ

−2−β)1/4

which is the same as (5).

Lemma 5 If F satisfies (5) on |z| ≤ 1, for some α, 0 < α ≤ 1, then F (eit) is Hölder
continuous with exponent α, that is,

|F (et1)− F (eit2)| ≤ C|t1 − t2|α

Proof. Given any two points t1 and t2 such that t2 − t2 = ρ. Consider 1 − r0 = ρ and the
line segment L1 from eit1 to r0e

it1 , L2 is the circular arc of length less than ρ along |z| = r0

from r0e
it1 to r0e

it2 , and L3 is the segment from r0e
it2 to eit2 . The integral of |∇F | on L1 is

at most

C

∫ ρ

0

s−1+α ds = (C/α)ρα

and similarly on L3. The integral on the circular arc L2 is at most its length of the arc times
the bound on |∇F | along that arc, namely ρO(ρ−1+α) = O(ρα). Thus

|F (eit2)− F (eit1)| ≤ Cρα

14
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