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TEST 2 FOR 18.102: 9:35 – 10:55, 9 APRIL, 2009.

WITH SOLUTIONS


For full marks, complete and precise answers should be given to each question 
but you are not required to prove major results. 

1. Problem 1 

Let H be a separable (partly because that is mostly what I have been talking 
about) Hilbert space with inner product (·, ) and norm � · �. Say that a sequence ·
un in H converges weakly if (un, v) is Cauchy in C for each v ∈ H. 

(1) Explain why the sequence �un�H is bounded. 
Solution: Each un defines a continuous linear functional on H by 

(A.1) Tn(v) = (v, un),	 �Tn� = �un�, Tn : H −→ C. 

For fixed v the sequence Tn(v) is Cauchy, and hence bounded, in C so by 
the ‘Uniform Boundedness Principle’ the �Tn� are bounded, hence �un� is 
bounded in R. 

(2) Show that there exists an element u ∈ H such that (un, v) → (u, v) for each 
v ∈ H. 

Solution: Since (v, un) is Cauchy in C for each fixed v ∈ H it is conver­
gent. Set 

(A.2)	 Tv = lim (v, un) in C. 
n→∞ 

This is a linear map, since 

(A.3) T (c1v1 + c2v2) = lim c1(v1, un) + c2(v2, u) = c1Tv1 + c2Tv2 
n→∞ 

and is bounded since |Tv| ≤ C�v�, C = supn �un�. Thus, by Riesz’ theorem 
there exists u ∈ H such that Tv = (v, u). Then, by definition of T, 

(A.4)	 (un, v) → (u, v) ∀ v ∈ H. 

(3) If ei, i ∈ N, is an orthonormal sequence, give, with justification, an example 
of a sequence un which is not weakly convergent in H but is such that 
(un, ej ) converges for each j. 

Solution: One such example is un = nen. Certainly (un, ei) = 0 for all 
i > n, so converges to 0. However, �un� is not bounded, so the sequence 
cannot be weakly convergent by the first part above. 

(4) Show that if the ei form an orthonormal basis, �un� is bounded and (un, ej ) 
converges for each j then un converges weakly. 

Solution: By the assumption that (un, ej ) converges for all j it follows 
that (un, v) converges as n →∞ for all v which is a finite linear combination 
of the ei. For general v ∈ H the convergence of the Fourier-Bessell series 
for v with respect to the orthonormal basis ej 

(A.5)	 v = (v, ek)ek 

k 
1 
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shows that there is a sequence vk v where each vk is in the finite span →
of the ej . Now, by Cauchy’s inequality 

(A.6) |(un, v) − (um, v)| ≤ |(unvk) − (um, vk)| + |(un, v − vk)| + |(um, v − vk)|. 
Given � > 0 the boundedness of �un� means that the last two terms can be 
arranged to be each less than �/4 by choosing k sufficiently large. Having 
chosen k the first term is less than �/4 if n, m > N by the fact that (un, vk) 
converges as n → ∞. Thus the sequence (un, v) is Cauchy in C and hence 
convergent. 

2. Problem 2 

Suppose that f ∈ L1(0, 2π) is such that the constants 

ck = f(x)e−ikx , k ∈ Z, 
(0,2π) 

satisfy	 � 
2|ck| < ∞. 

k∈Z 

Show that f ∈ L2(0, 2π). 
Solution. So, this was a good bit harder than I meant it to be – but still in 

principle solvable (even though no one quite got to the end). 
First, (for half marks in fact!) we know that the ck exists, since f ∈ L1(0, 2π) 

and e−ikx is continuous so fe−ikx ∈ L1(0, 2π) and then the condition |ck|2 < ∞
k 

implies that the Fourier series does converge in L2(0, 2π) so there is a function 

1 � 
(A.1)	 g = cke ikx .

2π 
k∈C 

Now, what we want to show is that f = g a.e. since then f ∈ L2(0, 2π). 
Set h = f − g ∈ L1(0, 2π) since L2(0, 2π) ⊂ L1(0, 2π). It follows from (A.1) that 

f and g have the same Fourier coefficients, and hence that 

(A.2)	 h(x)e ikx = 0 ∀ k ∈ Z. 
(0,2π) 

So, we need to show that this implies that h = 0 a.e. Now, we can recall from 
class that we showed (in the proof of the completeness of the Fourier basis of L2) 
that these exponentials are dense, in the supremum norm, in continuous functions 
which vanish near the ends of the interval. Thus, by continuity of the integral we 
know that 

(A.3)	 hg = 0 
(0,2π) 

for all such continuous functions g. We also showed at some point that we can 
find such a sequence of continuous functions gn to approximate the characteristic 
function of any interval χI . It is not true that gn uniformly, but for any 

1 
→ χI 

integrable function h, hgn → hχI in L . So, the upshot of this is that we know a 
bit more than (A.3), namely we know that 

(A.4)	 hg = 0 ∀ step functions g. 
(0,2π) 
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So, now the trick is to show that (A.4) implies that h = 0 almost everywhere. 
Well, this would follow if we know that 

(0,2π) |h| = 0, so let’s aim for that. Here 

is the trick. Since g ∈ L1 we know that there is a sequence (the partial sums of 
an absolutely convergent series) of step functions hn such that hn g both in →
L1(0, 2π) and almost everywhere and also |hn| → |h| in both these senses. Now, 
consider the functions 

0	 if hn(x) = 0 
(A.5)	 sn(x) = hn(x) otherwise. |hn(x)| 

Clearly sn is a sequence of step functions, bounded (in absolute value by 1 in fact) 
and such that snhn = |hn|. Now, write out the wonderful identity 

(A.6) |h(x)| = |h(x)| − |hn(x)| + sn(x)(hn(x) − h(x)) + sn(x)h(x). 

Integrate this identity and then apply the triangle inequality to conclude that 

|h| = (|h(x)| − |hn(x)| + sn(x)(hn − h) 

(A.7) 
(0�,2π) (0,2π) � 

(0,2π) 

≤ 
(0,2π) 

(||h(x)| − |hn(x)|| + 
(0,2π) 

|hn − h| → 0 as n →∞. 

Here on the first line we have used (A.4) to see that the third term on the right in 
(A.6) integrates to zero. Then the fact that sn| ≤ 1 and the convergence properties. 

Thus in fact h = 0 a.e. so indeed f = g 
|
and f ∈ L2(0, 2π). Piece of cake, right! 

Mia culpa. 

3. Problem 3 

Consider the two spaces of sequences 
∞

h±2 = {c : N �−→ C; j±4|cj |2 < ∞}. 
j=1 

Show that both h±2 are Hilbert spaces and that any linear functional satisfying 

T : h2 −→ C, |Tc| ≤ C�c�h2 

for some constant C is of the form 
∞

Tc = cidi 

j=1 

where d : N −→ C is an element of h−2. 
Solution: Many of you hammered this out by parallel with l2 . This is fine, but 

to prove that h±2 are Hilbert spaces we can actually use l2 itself. Thus, consider 
the maps on complex sequences 

(A.1)	 (T ±c)j = cj j
±2 . 

Without knowing anything about h±2 this is a bijection between the sequences in 
h±2 and those in l2 which takes the norm 

(A.2)	 �c�h±2 = �Tc�l2 . 
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It is also a linear map, so it follows that h are linear, and that they are indeed ±
Hilbert spaces with T ± isometric isomorphisms onto l2; The inner products on h±2 

are then 
∞

(A.3)	 (c, d)h±2 = j±4 cj dj . 
j=1 

Don’t feel bad if you wrote it all out, it is good for you! 
Now, once we know that h2 is a Hilbert space we can apply Riesz’ theorem to 

see that any continuous linear functional T : h2 −→ C, |Tc| ≤ C�c�h2 is of the form 
∞

(A.4)	 Tc = (c, d�)h2 = j4 cj d�j , d� ∈ h2. 
j=1 

Now, if d� ∈ h2 then dj = j4d�j defines a sequence in h−2. Namely, 

(A.5)	 j−4|dj |2 = j4|d�j |2 < ∞. 
j j 

Inserting this in (A.4) we find that 
∞

(A.6)	 Tc = cj dj , d ∈ h−2. 
j=1 




