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Suppose F is a field, and x, y ∈ F satisfy x2 = y2. We need to show 
that either x = y or x = −y. For the sake of sparing the proliferation of 
parenthesis, we will adopt the standard conventions about multiplication 
and addition, i.e. x + y · z is x + (y · z) rather than (x + y) · z. 

Now consider the quantity (x + (−y)) · (x + y). Using the distributive 
property, this is equal to (x + (−y))x + (x + (−y))y. Using distributiv­
ity again, we get (x2 + (−y) · x) + (x · y + (−y) · y). Using associativity 
of addition and commutativity of multiplication, we can rearrange this to 
x2 + ((x · y + x · (−y)) + (−y) · y). Now, we have 

x · y + x · (−y) = x · (y + (−y)) = x · 0 = 0 

Where the first step follows from distributivity, the second from the defini­
tion of −y, and the third from noting that that x · 0 = x · (0+0) = x · 0+ x · 0 
and adding −(x ·  0) to both sides. Similarly, y · (−y) + y2 = 0, and adding 
−y2 on the right to both sides gives (−y) · y = −y2. Going back, we have 

(x − y) · (x + y) = x2  + ((x · y + x · (−y)) + (−y) · y) 

= x2  + ((0) + (−y 2)) =  x2 + (−y 2) 

But by assumption x2 = y2, so  this is equal to y2 + (−y2) = 0. In other 
words, (x − y) · (x + y) = 0. 

If x = y, then we are done. So suppose x = y. Then x − y = 0, since 
if x − y = 0 we have y = 0 + y = (x − y) + y = x + (y − y) = x + 0 = x 
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using, respectively, definition of 0, substitution, associativity of addition, 
definition of −y, and definition of 0. So there must exist a multiplicative 
inverse (x − y)−1 . Then we have 

0 = (x − y)−1 · 0 = (x − y)−1((x − y)(x + y) = 

((x − y)−1(x − y))(x + y) = 1 · (x + y) = x + y 

The first equality is a fact we already proved, the second is just substitu­
tion, the third is associativity of multiplication, the fourth is the definition 
of multiplicative inverse, and the fifth is the definition of 1. 

Now we get 

x = x + 0 = x + (y − y) = (x + y) − y = 0 − y = −y 

Using the definition of 0, definition of −y, associativity of addition, substi­
tution, and definition of 0. In other words, if x = y, then x = −y, which is 
what we wanted to prove. 
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Suppose E is a finite dense subset of X. Then E contains no limit points. 
To see this, suppose x ∈ X is a limit point of E. Then by Theorem 2.20 
of Rudin, every neighbourhood of x has to contain infinitely many points 
of E. But E only has finitely many points, so this is obviously impossible. 
Since E has no limit points, it is vacuously true that it contains all its limit 
points, so E is closed and E = E. But E is dense in X, so E = X. This 
means that X = E, so X itself must be finite since E is. 
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We will show that Z is not compact in the p-adic topology by constructing 
an infinite set with no limit points. We begin with an elementary 

Lemma 1: Let m ∈ N and k the largest natural number with pk|m. Let 
l be natural number with m < pl . Then pk is the largest power of p dividing 
m + pl 

2 

6



 Proof: We have pk ≤ m < pl, so k < l and pk|pl  , hence pk divides m + pl. 
    ≤   Since k < l, k+1 l, so pk+1|pl. But then pk+1 cannot divide m + pl, since 

then it would divide (m + pl) − pl = m, a contradiction. 

 N i=n Now for n ∈ , we introduce the finite sum s 2i
n = i=0 p , where p is

the prime with respect to which we define the p-adic metric on Z. Let 
S = {sn|n ∈ N} be the set of all these numbers. S is 

 
obviously infinite, so 

if we can show that S has no limit points we are done. To do so, we need 
another elementary 

Lemma 2: 2s < p2n+2 
n 

Proof: Recall that by the formula for the sum of a geometric series, sn = 
− 2  (p2n+2 1)/(p −  1). Since p ≥ 2 we have p2 > 3, and so p2n+4−3p2n+2+2 = 

p2n+2(p2 − 3) + 2 > 0. Using these facts, the lemma follows from simple al­
gebra: 

2n+2 p  1
0 < p2n+4−3p2 n+2+2 =⇒ 2p 2n+2 −−2 < p2n+2(p2−1) =⇒ 2· < p2n+2

p2 − 1 

 =⇒ 2sn < p2n+2

With these two lemmas, we can show that S has no limit points. Let 
x ∈ Z. Pick some n sufficiently large that |x| < sn, which is always 
possible since sn > n. Let k ∈ N be the largest power of p dividing 
sn − x, i.e. d(x, s p k

n) = − . sn > |x| means that sn − x ∈ N is positive, 
and sn − x < 2s 2n+2

n < p , where the last step follows from Lemma 2. 
By Lemma 1, the largest power of p dividing (s − x) + p2n+2

n is k. But 
  (sn − x) + p2n+2 = (s + p2n+2

n ) − x = sn+1 − x, and so d(x, s −k
n+1) = p . 

Applying this argument again, d(x, s k
n+2) = p− , and indeed by induction 

d(x, s k
m) = p for all m ≥ n. Now let E > 0 n   be a real umber with E < p−k. 

Then if sm ∈ S ∩ NE(x), we must have m < n. So this neighbourhood 
contains only finitely many points of S, and hence x is not a limit point of 
S. Since x was arbitrary, this means that S has no limit points and Z is not 
compact. 
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We have K ⊂ X compact, E ⊂ X closed, and K ∩ E = ∅. We need to show 
that there exists D > 0 such that d(x, y) ≥ D for x ∈ X, y ∈ Y . 

Suppose not; we will derive a contradiction. Then for every D > 0, we 
can find x ∈ K, y ∈ E such that d(x, y) < D. For each n ∈ N, pick some 
xn ∈ K, and yn ∈ E, such that d(xn, yn) < 1/n. Let S = {xn|n ∈ N} be the 
set of all the xn’s. We consider two cases. 

Case 1: S is finite. This means there is a finite collection of points {z1, z2 . . . zM }
such that for all i ∈ N, there exists j ≤ M such that xi = zj . Now define 
the set Nj ⊂ N, 1 ≤ j ≤ M , by Nj = {i ∈ N|xi = zj }. By assumption, N 
is the union of the Nj ’s. But since there are only finite many Nj ’s, at least 
one of them must be infinite, since otherwise N would be a finite union of 
finite sets, and hence finite. So pick a j such that Nj is infinite. 

I claim that zj is a limit point of E. Fix any E > 0; we will find y ∈ NE(zj )∩E. 
Take some N0 ∈ N with 1/N0 < E. Since Nj is infinite and there are obvi­
ously only finite many positive integers less than N0, there must exist some 
n ∈ Nj with n > N0. Then 1/n < 1/N0, and by definition zj = xn, and 

d(zj , yn) = d(xn, yn) < 1/n < E 

This means that zj is a limit point of E. Since E is closed, zj ∈ E. On the 
other hand, zj = xn and xn ∈ K by construction. Thus zj ∈ K ∩ E, but 
K ∩ E = ∅, contradiction. 

Case 2: S is infinite. S is an infinite subset of a compact set K, hence 
must have a limit point x. x is then obviously a limit point of K, and since 
compact sets are closed we must have x ∈ K. We will show that it is also a 
limit point of E. Let E > 0; as before, we want to find y ∈ E with d(x, y) < E. 

Since x is a limit point of E, the neighbourhood NE/2(x) must contain in­
finitely many points of S. Pick N ∈ N with 1/N < E/2. Since there are only 
finitely many xn with n ≤ N , and S ∩ NE/2(x) is infinite, there must be an 
xn ∈ S ∩ NE/2(x) with n > N . Then using the triangle inequality we have 

d(x, yn) ≤ d(x, xn) + d(xn, yn) < E/2 + 1/n < E/2 + E/2 = E 
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Since E was arbitrary, this means that x is a limit point of E. But E is 
closed, so x ∈ E, and we already knew that x ∈ K, contradiction. 
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