Practice Midterm 1 Solutions, 18.100C, Fall 2012
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Suppose F is a field, and =,y € F satisfy 2> = y?. We need to show

that either £ = y or x = —y. For the sake of sparing the proliferation of
parenthesis, we will adopt the standard conventions about multiplication
and addition, i.e. x +y -z is z + (y - z) rather than (z +y) - 2.

Now consider the quantity (z + (—y)) - (x + y). Using the distributive
property, this is equal to (z + (—y))x + (x + (—y))y. Using distributiv-
ity again, we get (2 + (—y)-z) + (v -y + (—y) - ). Using associativity
of addition and commutativity of multiplication, we can rearrange this to
2?2+ ((x-y+z-(—y) + (~y)-y). Now, we have

zoyta-(my)=z-(y+(-y)=2-0=0

Where the first step follows from distributivity, the second from the defini-
tion of —y, and the third from noting that that -0 = z-(0+0) =z-04+x-0
and adding —(z - 0) to both sides. Similarly, v - (—y) 4+ y? = 0, and adding
—y2 on the right to both sides gives (—y) -y = —y?. Going back, we have

(z—y)- (+y) =2+ ((z-y+z - (—y)+ (-y)y)
=27+ ((0) + (—¢?)) = 2> + (—?)

But by assumption 22 = y?, so this is equal to y? + (—y?) = 0. In other
words, (z —y) - (z+y) =0.

If x = y, then we are done. So suppose x # y. Then x — y # 0, since
ifr—y=0wehavey=04+y=(x—y)+ty=o+(y—y)=2+0==x



using, respectively, definition of 0, substitution, associativity of addition,
definition of —y, and definition of 0. So there must exist a multiplicative
inverse (x —y)~!. Then we have

O=(@—y) " 0=@—y) ((z—y(z+y) =
(z—y)'@-y)z+y) =1-(z+y) =z+y

The first equality is a fact we already proved, the second is just substitu-
tion, the third is associativity of multiplication, the fourth is the definition
of multiplicative inverse, and the fifth is the definition of 1.

Now we get

r=r+0=z+(@y-y) =@+y -y=0-y=—y

Using the definition of 0, definition of —y, associativity of addition, substi-
tution, and definition of 0. In other words, if x # y, then £ = —y, which is
what we wanted to prove.
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Suppose F is a finite dense subset of X. Then E contains no limit points.
To see this, suppose x € X is a limit point of E. Then by Theorem 2.20
of Rudin, every neighbourhood of z has to contain infinitely many points
of E. But FE only has finitely many points, so this is obviously impossible.
Since F has no limit points, it is vacuously true that it contains all its limit
points, so E is closed and E = E. But F is dense in X, so E = X. This
means that X = F, so X itself must be finite since F is.

3

We will show that Z is not compact in the p-adic topology by constructing
an infinite set with no limit points. We begin with an elementary

Lemma 1: Let m € N and k the largest natural number with p¥|m. Let
[ be natural number with m < p!. Then p* is the largest power of p dividing
m + p!



Proof: We have p* < m < p!, so k < [ and pk\pl, hence pF divides m + p'.
Since k < I, k+1 <1, so p**1|p'. But then pF! cannot divide m + p!, since
then it would divide (m + p!) — p! = m, a contradiction.

Now for n € N, we introduce the finite sum s, = Ezzg p?, where p is
the prime with respect to which we define the p-adic metric on Z. Let
S = {sp|n € N} be the set of all these numbers. S is obviously infinite, so
if we can show that S has no limit points we are done. To do so, we need
another elementary

Lemma 2: 2s,, < p?"t2

Proof: Recall that by the formula for the sum of a geometric series, s, =
(p?"*+2—1)/(p*—1). Since p > 2 we have p? > 3, and so p>" 4 —3p?"*+2 12 =
p?"*+2(p? — 3) +2 > 0. Using these facts, the lemma follows from simple al-
gebra:

p2nt2

p?—1

2n+2

0 < p?H_3p? 249 — 2?22 < P 2(p2_1) = 2. <p

= 2s, < p"t?

With these two lemmas, we can show that S has no limit points. Let
x € Z. Pick some n sufficiently large that |z| < s,, which is always
possible since s, > n. Let kK € N be the largest power of p dividing
s, — x, i.e. d(z,s,) = p~¥. s, > |z| means that s, — x € N is positive,
and s, — x < 2s, < p?"*2, where the last step follows from Lemma 2.
By Lemma 1, the largest power of p dividing (s, — z) + p**™2 is k. But

(8, — ) + p*"*2 = (8, + p*"*?) = = 5,01 — x, and so d(z, s5p,41) = p~F.

Applying this argument again, d(z,s,,2) = p~*, and indeed by induction
d(z,s,) = p* for all m > n. Now let € > 0 be a real number with ¢ < p=*.
Then if s, € SN Ne(x), we must have m < n. So this neighbourhood
contains only finitely many points of S, and hence x is not a limit point of
S. Since x was arbitrary, this means that S has no limit points and Z is not

compact.
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We have K C X compact, £ C X closed, and KN E = (). We need to show
that there exists D > 0 such that d(x,y) > D forz € X,y €Y.

Suppose not; we will derive a contradiction. Then for every D > 0, we
can find z € K,y € E such that d(z,y) < D. For each n € N, pick some
z, € K, and y,, € E, such that d(z,,y,) < 1/n. Let S = {z,|n € N} be the
set of all the x,’s. We consider two cases.

Case 1: S'is finite. This means there is a finite collection of points {z1, 22 ... zar }
such that for all i € N, there exists j < M such that z; = z;. Now define
the set N;j C N, 1 < j < M, by N; = {i € N|z; = z;}. By assumption, N

is the union of the IV;’s. But since there are only finite many N;’s, at least
one of them must be infinite, since otherwise N would be a finite union of
finite sets, and hence finite. So pick a j such that IV; is infinite.

I claim that z; is a limit point of E. Fix any € > 0; we will find y € N(z;)NE.
Take some Nyg € N with 1/Ny < e. Since Nj is infinite and there are obvi-
ously only finite many positive integers less than Ny, there must exist some
n € N;j with n > Ng. Then 1/n < 1/Ny, and by definition z; = x,,, and

d(Zj,yn) = d(l'nayn) < 1/” <e€

This means that z; is a limit point of E. Since E is closed, z; € E. On the
other hand, z; = z, and z, € K by construction. Thus z; € K N E, but
K N E = (), contradiction.

Case 2: S is infinite. S is an infinite subset of a compact set K, hence
must have a limit point . x is then obviously a limit point of K, and since
compact sets are closed we must have x € K. We will show that it is also a
limit point of E. Let € > 0; as before, we want to find y € E with d(z,y) < e.

Since z is a limit point of F, the neighbourhood N /p(x) must contain in-
finitely many points of S. Pick N € N with 1/N < ¢/2. Since there are only
finitely many z,, with n < N, and SN N,j5(x) is infinite, there must be an
Tp € SN Nejp(x) with n > N. Then using the triangle inequality we have

d(z,yn) < d(x,zp) + d(Tn,yn) < €/2+1/n<e€/2+¢/2=¢



Since € was arbitrary, this means that x is a limit point of E. But F is
closed, so z € E, and we already knew that = € K, contradiction.
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