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The stament is true. Let bk = 2−kak. By Rudin Theorem 3.23, limk  ak = →∞
0. In particular, the ak’s are bounded, i.e. for some a > 0, |ak| < a. Then 

k  for any k, |b k
k| < 2− a. But ∞

k=0 2
− a = 2a, so |bk| is bounded above by a 

convergent series, hence

  
k |bk| converges, and hence so does

 
k bk. 
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If f is constant f(x) := a, it is obviously periodic and its image is the one-
point closed interval [a, a]. So assume f is non-constant. 
Note that by induction, f(x + C) = f(x) implies f(x + nC) = f(x) for all 
positive integers n. We also have f(x) = f((x − C) + C) = f(x − C), and 
so by induction f(x − nC) = f(x) for all positive integers n. Putting these 
together, f(x + nC) = f(x) for all n ∈ Z. 

Now let a ∈ R. I claim there exists N ∈ Z such that a−NC ∈ [0, C]. Indeed, 
let E = {n ∈ Z|nC < a}. By the Archimedean property of the reals, E is 
bounded from above; by applying the Archimedan property to −a if a is 
negative, we see that E is also non-empty (since nC > −a =⇒ −nC < a). 
Let N = sup E. E is a closed (indeed, discrete) subset of the reals, so 
N ∈ E, and so NC < a, or a − NC > 0. On other other hand, a − NC ≤ C, 
since otherwise a > (N + 1)C, contradicting N = sup E. 

Using this, I claim that f(R) = f([0, C]). The inclusion f([0, C]) ⊂ f(R) is 
immediate. For the other inclusion, if b ∈ f(R), then b = f(a). Pick N as in 
the previous paragraph, and then a−NC ∈ [0, C] and f(a−NC) = f(a) = b. 

The interval [0, C] is compact, so the image f([0, C]) is also compact. Let 
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c = inf f([0, C] and d = sup f([0, C]). Since compact sets are bounded, 
−∞ < c ≤ d < ∞, and since they are closed c ∈ f([0, C]) and d ∈ f([0, C]. 

I claim that f([0, C]) = [c, d]. In one direction, suppose y ∈ f([0, C]). 
By the definition of inf and sup we have c ≤ y ≤ d, which is to say that 
y ∈ [c, d]. Hence f([0, C]) ⊂ [c, d]. 

For the other direction, note that in fact c < d. Indeed, if c = d, then 
f(R) = f([0, C]) ⊂ [c, c] = {c}, which means that f is constant, contra our 
assumptions. Now pick any a ∈ [0, C] with f(a) = c, and b ∈ [0, C] with 
f(b) = d; we have a  Without loss of generality assume a < b; the exact = b. 
same argument will work for a > b. 

Let y ∈ [c, d]. f(a) = c and f(b) = d, so apply the Intermediate Value 
Theorem to f restricted to [a, b]; we conclude there exists x ∈ [a, b] with 
f(x) = y. Hence [c, d] ⊂ f([0, C]) so f(R) = [c, d]. 

If you examine the above argument carefully, it actually proves that the 
continuous image of any closed and bounded interval is another closed and 
bounded interval. The only place where we used periodicity of f was to show 
that the image of f was the same as the image of some closed subinterval. 
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Suppose f : R → R is uniformally continuous. Then there exists δ > 0 such 
that |x − y| < 2δ =⇒ |f(x) − f(y)| < 1. For n ∈ Z, let an = nδ. Then we 
have 

Claim: |f(an)| < |f(0)| + |n|. 

Proof: we proceed by induction. a0 = 0, so the base case is clear. Sup­
pose we have proved this estimate for n ≥ 0. Then |an+1 − an| = δ, and so 
|f(an+1) − f(an)| < 1. Then using the triangle inequality 

|f(an+1)| ≤ |f(an)| + |(f(an+1 − f(an)| < f(0) + n + 1 

The argument for negative n is similar. 

Now let C = f(0) + 1 and D = 1/δ. I claim that |f(x)| < C + D|x| 
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for all x ∈ R. First note that if x = an for some n, then |x| = |n|δ, so 
D|x| = |n|, so in this case |f(x)| < C + D|x| follows from the claim. 

Now let x ∈ R be any point. Then take n ∈ Z such that |x| ≥ |an|, 
but |x − an| < δ. The proof that such an n exists is very similar to the 
argument in the previous problem; if x > 0, one takes n to the sup of all k 
such that ak ≤ x, while if x < 0 one take the inf of all k such that ak ≥ x. 
Then the first condition is satisfied, and if the second condtion were not one 
could take an+1 in the positive case or an  1 in the negative one and produce −
a contradiction. 

Thus we have |x − an| < δ, so |f(x) − f(an)| < 1, and so 

|f(x)| ≤ |f(an|+ |f(x)−f(an)| < f(0)+n+1 = f(0)+1+D|an| < C +D|x| 
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Note that f being twice differentiable at p means that f must be differen­
tiable on some interval containing  p. Since f '(p) = 0, we have 

f ' (x) f ' (x)  f ' (p) 
lim  = 

−
= f ''(p) > 0

x→ p x − p x − p 

Take δ > 0  such that f '(x) exists on [p − δ, p + δ] and 

f ' (x) |x − p| < δ, x = p =⇒


    f
 '' (p) − 
x − p


   

< f '' (p)/2 

 Then  for |x − p| < δ, x = p we have f '(x)/(x − p) >

 
f ''(p)/2 > 0. If x > p, 

 the the denominator is positive, we must have f '(x) > 0, while if x < p then 
the denominator is negative and f ' (x) < 0. 

I claim that for |x − p| < δ, f(x) > f(p). There are two cases to con­
sider, although the arguments are of course almost identical. 

x > p: f is differentiable on the interval [p, x] by construction. Hence 
by the Mean Value Theorem there exists y ∈ (p, x) such that f(x) − f(p) = 
f '  (y)(x − p). Then |y − p| < |x − p| < δ and y > p, and so f '(y) > 0, and 
f(x) − f(p) > 0. 
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x < p: f is differentiable on the interval [x, p] by construction. Hence 
by the Mean Value Theorem there exists y ∈ (x, p) such that f(p) − f(x) = 
f ' (y)(p − x). Then |y − p| < |x − p| < δ and y < p, and so f ' (y) < 0, and 
f(p) − f(x) < 0 

In either case f(p) < f(x) and we are done. 

'' Note that if f exists and is continuous on a neighbourhood of p, there 
is a shorter, and perhaps more intuitive, proof. In this case, pick δ > 0 such 

'' '' that f > 0 on [p − δ, p + δ], which is possible since f is continuous. Then 
for |x − p| < δ, we have by the second order Taylor Forumla 

'' (y)
f(x) = f(p) + 

f 
(x − p)2 

2 

For some y between x and p. But for such y, f '' (y) > 0, and we see that 
f(x) > f(p). However, we were given only that f '' (p) exists, so the longer 
proof was required. 
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