Practice final exam solutions

1

We write d = dgycor for the French Railroad metric on R?. In this problem
we will often use the easily checked fact that if (z,,) is a Cauchy sequence in
any metric space, then z,, — z if and only if z,, — x for some subsequence

So let (r,) C R? be a Cauchy sequence with respect to d. We will show
that (z,) is convergent, and hence that d is a complete metric. If z,, — 0
then obviously we are done, so assume (x,) does not converge to 0. Note
that since 0 lies on every line through the origin by definition, we have that
d(xn,0) = |2y

I claim that there exists ¢ > 0 such that |z,| > € for all n € N. Indeed, if
not then there exists a subsequence (z,, ) with |z,,| = 0 as £ — oo, which
means that the subsequence (z,, ) converges to 0 with respect to d. Then
since (z,,) is Cauchy, x,, — 0, contradiction.

Now let N € N be sufficiently large that d(x,,z,) < € for n,m > N.
Then z, and x,, must lie on the same line. If they didn’t, then

€ > d(Tn, Tm) = |Tn| + |Tm| > e+ €

Contradiction.

In other words, there exists a line | C R? with x, € [ for n > N. For
any n,m > N, we then have d(z,, x;,) = |€n — Tm|. Thus, (x,) is a Cauchy
sequence with respect to the standard Euclidean metric on R?, since d will
agree that metric for sufficiently large n. Since | - | is complete, there exists



x € R? with lim,,_,s |z —2y| = 0. Lines are closed subsets of R? with respect
to ||, so z € l. Then d(xy,x) = |z, — x|. Thus z,, — x with respect to d,
and so d is complete.

2

Let E = QN [0,1]. FE is an infinite subset of a countably infinite set,
hence is countably infinite. In other words, there exists a bijective function
f: N — E. Define the sequence (z,,) via ¥, = f(n). Note that E = [0,1]

Let F be the set of all subsequential limits of E. I claim that F' = [0, 1].
Suppose that x € F. Take a subsequence (z,, ) converging to . Then every
neighbourhood of = contains all but finitely many (z,, ), and in particular
intersects E. So x € E = [0,1].

Conversely, suppose = € [0,1]. We will construct a subsequence z,, —
inductively. Let ny = 1. Suppose we have definted ni,ns,...ng. Consider
the subset Ap11 C N, defined by

Agsr = {n € Nllz — F()] < 1)

Recall that x, = f(n). Since x is a limit point of E, By ,41(7) contains
infinitely many points of F; since f is surjective, this implies that Ag;q is
infinite. Thus we can pick a ngy1 € Apy1 with ngyq > ng.

Thus we have constructed a subsequence (z, ) with | — z,, | < 1/k, which
means that z,, — x, so x € F. Thus F' = [0, 1] and we are done.

3

We have a continuous function f : [0,1] x [0,1] — R. For a fixed z € [0, 1],
consider the function h; : [0,1] — R defined by h,(y) = f(x,y). Then h,
is continuous; indeed, for any y € [0,1] and € > 0, take a § > 0 that works
for f and € at (z,y). Since h, is a continuous function on a compact set,
it attains a finite maximum; in other words, for some yy € [0, 1], we have

f(x,90) = ha(yo) > ha(y) = f(z,y) for all y € [0,1]. Then

g(x) = sup {f(z,y)} = f(x,y0)

y€[0,1]


http:n1,n2,...nk

Is well defined. We need to show that ¢ : [0,1] — R is continuous. Note that
we have not only proved that g is well defined, but have also shown that for
any = € [0, 1], there exists y € [0, 1] with g(z) = f(z, ).

Let z € [0,1]. We need to show that lim, ., g(z) = g(z). So suppose
this is false. Then there exists € > 0 and a sequence (z,,) with x,, — = but

l9(zn) — g(z)| > €.

For each x,, pick y, € [0,1] such that g(z,) = f(zn,yn). Now consider
the sequence ((zy, yn))nen. This a sequence in the compact set [0, 1] x [0, 1],
hence has a convergent subsequence. In other words there exists (z/,y') €
[0,1] x [0, 1] with (2, ,Yn,) — (2',y'). This implies that z,, — 2/, but since
this a subsequence of a convergent sequence, it must also converge to x, and
so ' = .

f is continuous, and so
f(:L’, y/) = klinolo f(xnka ynk) = k:linolo g(xnk)

Hence, we must have |g(z)— f(x,y')| > e. Pick y € [0, 1] with f(z,y) = g(z).
Then f(x,y) > f(x,y’), by the definition of g, and so

f(x,y)ff(x,y') 2> €

On the other hand, f is uniformally continuous, since it is a continuous
function on a compact set. Pick a § > 0 such that

d((z,w), (Z,w")) <d = d(f(z,w), f(z/,w")) <€/3
and k sufficiently large that |z — x|,y — yn,| < 6/v2. Then |f(z,y) —

f(2n,,y)| < €/3, and so

f(xnkay) > f(xay> - 6/3
Similarly, | f(2n,, yn,) — f(z,y')] < €/3, and so

f@,y') +€/3> f(@n,yn,)



Putting these together, we have

f(xnpy) > f(ﬂs,y) - 6/3 > f($7y/) + 6/3 > f(xnkaynk)
This is a contradiction, since f(Zn,,Yn,) = 9(Tn,) = sup,{ f(Tn,,y)}-

4

We will show that ¢'(z¢) = f”(x0)/2 by directly evaluating the limit of
difference quotients. We have

g(r) —glwo) _ . O — f(w0) f(x) = f(w0) = (& — w0) f'(2)

lim lim = lim 5
z—T T — Tg z—xo T — To T (x — )

Note that both the numerator and the denominator of the above expression
converge to 0 as z — xg. Since f is twice differentiable at zg, it must
be once differentiable in some neighbourhood of x(, otherwise the second
derivative would not even make sense. Thus we can apply L’Hopital’s rule;
the derivative of the numerator is f/(z) — f’(xg), while the derivative of the
denominator is 2(z — xp). In other words, we have

9@ —g(w0) L f@) — £ (o) _ £1(0)

T—T0 T — Zo z—=zo  2(x — x) 2

In particular, the limit exists, i.e. g is differentiable at xg.

5

f is integrable, with integral 0. Note that any closed interval [z,y] with
x < y contains a point z with f(z) = 0. Since f is non-negative, this implies
that for any partition P, we have L(f, P) = 0.

Let € > 0. We will find a partition P with the upper Riemann sum U(f, P) <
2¢, which will prove the result. Consider the function g : [¢,1] — R, which
is equal tof restricted to the interval [e, 1]. g has only finitely many points
of discontinuity, namely, the finitely many points of the form 1/n > e for



n € N. Hence by Rudin Theorem 6.10, ¢ is integrable. Since all lower
Riemann Sums of g are zero, we must have

/:g(g;):o

In particular, there exists a partition P of [e, 1] with U(g, P) < e.

Now consider the partition of [0,1] defined by P = P U {0}. Then all
but the first term of U(f, P’) is contained in U(g, P). More precisely, we
have

U(f,P)=(sup f(z))(e—0)+U(g,P) <e+e=2e.

z€[0,€]

Which proves the result.

6

Since f : [0,1] — R is integrable, it is bounded, i.e. |f(z)] < M for all
z € [0,1]. We may assume M > 1. Let € > 0. Let § < ¢/(2M).

Note that 0 < 1—6 < 1, and so by Rudin Theorem 3.20 lim;,_,o,(1—6)" = 0.
Let N be sufficienly large that n > N = (1 — )" < 4. Then for any
0<x<1-9¢andany n> N, we have " < §. Hence for n > N, we have
1-6 1-6
/ f(x)z"dx
0

1-6
S/ |f(z)]z"dx < M5dx<M5<%
0 0

On the other hand 2™ <1 for x € [0, 1], and so

1 1
</ |f(z)|z"dx < Mdz = M§ < <
1- 1- 2

1 f(z)x"dx
1-6

Putting these together, we have

€ €
< -4+ =-=€.

1 f(z)x"dx 515

1-6

1-6
f(z)z"dx
0

/1 f(z)z"dz| < +
0




Thus lim,, fol f(z)z"dz = 0.
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