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We write d = d 2 
SNCF for the French Railroad metric on R . In this problem 

we will often use the easily checked fact that if (xn) is a Cauchy sequence in 
any metric space, then xn → x if and only if xnk → x for some subsequence 
(xnk ). 

 So let (xn) ⊂ R2 be a Cauchy sequence with respect to d. We will show 
that (xn) is convergent, and hence that d is a complete metric. If xn → 0 
then obviously we are done, so assume (xn) does not converge to 0. Note 
that since 0 lies on every line through the origin by definition, we have that 
d(xn, 0) = |xn|. 

I claim that there exists E > 0 such that |xn| > E for all n ∈ N. Indeed, if 
not then there exists a subsequence (xnk ) with |xnk | → 0 as k → ∞, which 
means that the subsequence (xnk ) converges to 0 with respect to d. Then 
since (xn) is Cauchy, xn → 0, contradiction. 

Now let N ∈ N be sufficiently large that d(xn, xm) < E for n,m > N . 
Then xn and xm must lie on the same line. If they didn’t, then 

E > d(xn, xm) = |xn| + |xm| > E + E 

Contradiction. 

        ⊂ R2 In other words, there exists a line l with xn ∈ l for n > N . For 
any n,m > N , we then have d(xn, xm) = |xn − xm|. Thus, (xn) is a Cauchy 
sequence with respect to the standard Euclidean metric on R2, since d will 
agree that metric for sufficiently large n. Since | · | is complete, there exists 
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x ∈ R2 with limn→∞ |x−xn| = 0. Lines are closed subsets of R2 with respect 
to | · |, so x ∈ l. Then d(xn, x) = |xn − x|. Thus xn → x with respect to d, 
and so d is complete. 
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Let E = Q ∩ [0, 1]. E is an infinite subset of a countably infinite set, 
hence is countably infinite. In other words, there exists a bijective function 
f : N → E. Define the sequence (xn) via xn = f(n). Note that E = [0, 1] 

Let F be the set of all subsequential limits of E. I claim that F = [0, 1]. 
Suppose that x ∈ F . Take a subsequence (xnk ) converging to x. Then every 
neighbourhood of x contains all but finitely many (xnk ), and in particular 
intersects E. So x ∈ E = [0, 1]. 

Conversely, suppose x ∈ [0, 1]. We will construct a subsequence xnk → x 
inductively. Let n1 = 1. Suppose we have definted n1, n2, . . . nk. Consider 
the subset Ak+1 ⊂ N, defined by 

1 
Ak+1 = {n ∈ N||x − f(n)| < }

k 

Recall that xn = f(n). Since x is a limit point of E, B1/k+1(x) contains 
infinitely many points of E; since f is surjective, this implies that Ak+1 is 
infinite. Thus we can pick a nk+1 ∈ Ak+1 with nk+1 > nk. 

Thus we have constructed a subsequence (xnk ) with |x − xnk | < 1/k, which 
means that xnk → x, so x ∈ F . Thus F = [0, 1] and we are done. 
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We have a continuous function f : [0, 1] × [0, 1] → R. For a fixed x ∈ [0, 1], 
consider the function hx : [0, 1] → R defined by hx(y) = f(x, y). Then hx 
is continuous; indeed, for any y ∈ [0, 1] and E > 0, take a δ > 0 that works 
for f and E at (x, y). Since hx is a continuous function on a compact set, 
it attains a finite maximum; in other words, for some y0 ∈ [0, 1], we have 
f(x, y0) = hx(y0) ≥ hx(y) = f(x, y) for all y ∈ [0, 1]. Then 

g(x) = sup {f(x, y)} = f(x, y0) 
y∈[0,1]
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Is well defined. We need to show that g : [0, 1] → R is continuous. Note that 
we have not only proved that g is well defined, but have also shown that for 
any x ∈ [0, 1], there exists y ∈ [0, 1] with g(x) = f(x, y). 

Let x ∈ [0, 1]. We need to show that limz→x g(z) = g(x). So suppose 
this is false. Then there exists E > 0 and a sequence (xn) with xn → x but 
|g(xn) − g(x)| > E. 

For each xn, pick yn ∈ [0, 1] such that g(xn) = f(xn, yn). Now consider 
the sequence ((xn, yn))n∈N. This a sequence in the compact set [0, 1] × [0, 1], 

/ /) ∈hence has a convergent subsequence. In other words there exists (x , y
/[0, 1] × [0, 1] with (xnk , ynk ) → (x , y/). This implies that xnk → x/, but since 

this a subsequence of a convergent sequence, it must also converge to x, and 
/so x = x. 

f is continuous, and so 

f(x, y /) = lim f(xnk , ynk ) = lim g(xnk ) 
k→∞ k→∞ 

Hence, we must have |g(x)−f(x, y/)| ≥ E. Pick y ∈ [0, 1] with f(x, y) = g(x). 
Then f(x, y) ≥ f(x, y/), by the definition of g, and so 

f(x, y) − f(x, y/) ≥ E 

On the other hand, f is uniformally continuous, since it is a continuous 
function on a compact set. Pick a δ > 0 such that 

/ /d((z, w), (z , w/)) < δ =⇒ d(f(z, w), f(z , w/)) < E/3 

√ 
and k sufficiently large that |x − xnk |, |y/ − ynk | < δ/ 2. Then |f(x, y) − 
f(xnk , y)| < E/3, and so 

f(xnk , y) > f(x, y) − E/3 

Similarly, |f(xnk , ynk ) − f(x, y/)| < E/3, and so 

f(x, y /) + E/3 > f(xnk , ynk ) 
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Putting these together, we have 

f(xnk , y) > f(x, y) − E/3 > f(x, y/) + E/3 > f(xnk , ynk ) 

This is a contradiction, since f(xnk , ynk ) = g(xnk ) = supy{f(xnk , y)}.
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We will show that g/(x0) = f //(x0)/2 by directly evaluating the limit of 
difference quotients. We have 

f(x)−f(x0) 
g(x) − g(x0) − f  −x0 

/(x0)x f(x) 
lim = lim = lim 

− f(x0) − (x − x0)
x→x0 x − x0 x→x0 x − x0 x→x0 (x − x0)2 

Note that both the numerator and the denominator of the above expression 
converge to 0 as x → x0. Since f is twice differentiable at x0, it must 
be once differentiable in some neighbourhood of x0, otherwise the second 
derivative would not even make sense. Thus we can apply L’Hopital’s rule; 
the derivative of the numerator is f /(x) − f /(x0), while the derivative of the 
denominator is 2(x − x0). In other words, we have 

g(x) − g(x0) f /(x) 
lim = lim 

− f /(x0) f //(0)
= 

x→x0 x − x0 x→x0 2(x − x0) 2 

In particular, the limit exists, i.e. g is differentiable at x0. 
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f is integrable, with integral 0. Note that any closed interval [x, y] with 
x < y contains a point z with f(z) = 0. Since f is non-negative, this implies 
that for any partition P , we have L(f, P ) = 0. 

Let E > 0. We will find a partition P with the upper Riemann sum U(f, P ) < 
2E, which will prove the result. Consider the function g : [E, 1] → R, which 
is equal tof restricted to the interval [E, 1]. g has only finitely many points 
of discontinuity, namely, the finitely many points of the form 1/n > E for 

f /(x)
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n ∈ N. Hence by Rudin Theorem 6.10, g is integrable. Since all lower 
Riemann Sums of g are zero, we must have 1 

g(x) = 0 
1 

In particular, there exists a partition P of [E, 1] with U(g, P ) < E. 

Now consider the partition of [0, 1] defined by P / = P ∪ {0}. Then all 
but the first term of U(f, P /) is contained in U(g, P ). More precisely, we 
have 

U(f, P /) = ( sup f(x))(E − 0) + U(g, P ) < E + E = 2E. 
x∈[0,1] 

Which proves the result. 
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Since f : [0, 1] → R is integrable, it is bounded, i.e. |f(x)| < M for all 
x ∈ [0, 1]. We may assume M > 1. Let E > 0. Let δ < E/(2M). 

Note that 0 < 1−  δ < 1, and so by Rudin Theorem 3.20 lim n
n (1→∞ −δ) = 0. 

Let N be sufficienly large  that n > N =⇒ (1 − δ)n < δ. Then for any 
0 ≤ x ≤ 1 − δ and  any n > N , we have xn < δ. Hence for n > N , we have

    1−δ 1−δ  1−δ 
n

    n E   f(x)x dx ≤ |f(x)|x  dx < Mδdx < Mδ < 
0 0 0 2

On the other hand xn ≤ 1 for x ∈ [0, 1], and so      1 1 1 E 
f(x)xn  dx

     < 
 

|f(x)|xn dx <
1−δ 1−δ 

 
Mdx = Mδ <  

1 2 −δ 

Putting these together, we have 

      1      1
n

−δ  E E f(x)x  dx ≤  f(x)xn  dx
   1    +           f(x)xn  dx

     < + = E.  
0 0 1 2 2 −δ 
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� 1
Thus limn f(x)xndx = 0. 0 
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