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18.100B Problem Set 9 Solutions

Sawyer Tabony 

1) First we need to show that 
1 

fn(x) = 
nx + 1


converges pointwise but not uniformly on (0, 1). If we fix some x ∈ (0, 1), we have that

1


lim fn(x) = lim = 0. 
n→∞ n→∞ nx + 1 

Thus the fn converge pointwise. However, consider ε = 1 , and let N ∈ N. Then4 

1 1 1 
fN (

N 
) = 

N(N 
1 + 1) 

= 
2 

< ε.� 

So the fn do not converge to zero uniformly. Now we consider
 
x
 

gn = . 
nx + 1


Given ε > 0, let N ∈ N be larger than 1 . Then for any x ∈ (0, 1), M ≥ N , we have
ε 

x 1 1 1 
gM (x) = 

Mx + 1 
= 

M + 1 <
M 

≤ 
N 

< ε.

x


Thus, gn converges to 0 uniformly on (0,1).


2) The functions fn are defined on R by 
x 

fn = 
2 .1 + nx

1
First we show fn −→ 0. For any ε > 0, choose N >

ε2 . Then for n > N , if |x| ≤ ε, 

|x| < ε(1 + nx2) so |fn(x)| < ε. If |x| > ε, 


=
⇒
ε >
 
>
 
 =
|

fn(x)
|

.
 x
 x
 
> nε2 > 1 = 
nεx2 ⇒|

 |nεx

 | >
|x|
|
 
 
1 + nx
2nx2
 

Thus fn converges uniformly to 0 = f . 
Differentiating, we find 

fn
� (x) = 

(1 + nx2) · 1 − x · (2nx)
= 

1 − nx2 

.
(1 + nx2)2 (1 + nx2)2 

Thus,
 

So for all x = 0, f � (x) −→ 0, but fn(0) = 1, ∀n ∈ N. So if g(x) = lim fn(x), g(0) = 1 = 0 =n 
f �(0). But f �(x) = 0, and thus exists, for all x. 

For all x = 0,� f �(x) = 0 = g(x). We showed above that fn −→ f uniformly on all of R. Finally, 
f � −→ g uniformly away from zero, that is, on any interval that does not have zero as a limit n

point. This is true because the denominator of fn
� can be made arbitrarily large compared to the 

numerator, for |x| > ε. 
1 

2
 2 1 + nx21 − nx

(1 + nx2)2
 

1 − nx
 
(1 + nx 

1
|
 |
2)2
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� (x)| =f =
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|
 
 
 (1 + nx2)2 1 + nx
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3) So we have fn −→ f uniformly for fn bounded. Then for ε = 1, ∃N such that ∀n > N , x ∈ E, 
|fn(x)−f(x)| < 1. Thus if fn is bounded by Bn, ∀x ∈ E, |f(x)| < 1+BN which implies that ∀n > 
N , x ∈ E, fn(x) < BN + 2. Thus (fn) is uniformly bounded by max{B1, B2, ..., BN−1, BN + 2}. 

If the fn are converging pointwise, f need not be bounded. For example, on (0, 1), if 
1 

fn(x) = , 
x + 1 

n 

1 1
then fn −→ pointwise, and each fn is bounded by n, but of course is unbounded on (0, 1). 

x x 

4) We have fn −→ f and gn −→ g uniformly. 
a) Given ε > 0, ∃M,N ∈ N such that for any m > M , n > N , |fm − f | < 2 

ε and |gn − g| < ε . So2 
for n, m > max{M,N}
 

ε ε
 |(fn + gn) − (f + g)| = |(fn − f) + (gn − g)| ≤ |fn − f | + |gn − g| < 
2

+
2

= ε. 

So (fn + gn) −→ (f + g) uniformly. 
b) If each fn and gn is bounded on E, by the previous problem they are uniformly bounded, say 

by A and B. Say without loss of generality A ≥ B. Then for ε > 0, choose N such that if 
n > N , |fn − f | < 2 

ε
A and |gn − g| < 2 

ε
A . Then 

ε ε |fngn − fg| = |fngn − fgn + fgn − fg| ≤ |fn − f ||gn| + |f ||gn − g| < 
2A

A +
2A

A = ε. 

So fngn converges to fg uniformly. 

5) Define � 

f (x) = x, g (x) = 
0 if x /∈ Q 

q if, in lowest terms, x = p/q 

so that � �

1 1
 

fn (x) = f (x) 1 + , and gn (x) = g (x) + . 
n n
 

On any interval [a, b], with M = max (|a|, |b|) we have
 

= 
|x| M

, =
1 |fn (x) − f (x)| 

n 
≤ 

n 
|gn (x) − g (x)| 

n
 
so that fn → f and gn → g uniformly.
 

On the other hand, with m = min (|a|, |b|) we have
 

|fn (x) gn (x) − f (x) g (x)| = |(fn (x � 
) − f (x)) gn (x � 

) + f (x) (gn (x) − g (x))| 
f (x) n + 1 m 

= 
n

g (x) + 
n 

≥ 
n

g (x) . 

Now notice that if L ∈ N is larger than b − a then there is an integer k such that k ∈ [a, b],L 
nchoosing L ∈ N larger than and larger than b − a we get m 

m k m �fngn − fg� ≥ 
n

g 
L 

= 
n

L > 1 

and hence fngn does not converge to fg uniformly. 
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6) We want to show g ◦ fn −→ g ◦ f uniformly, for g continuous on [−M,M ]. Since g is continuous 
on a compact set, it is uniformly continuous. So given ε > 0, ∃δ > 0 such that if |x − y| < δ, 
|g(x) − g(y)| < ε. Now since fn −→ f uniformly, ∃N ∈ N such that for any n > N , x ∈ E, 
|fn(x) − f(x)| < δ. Thus |g(fn(x)) − g(f(x))| < ε, so |g ◦ fn(x) − g ◦ f(x)| < ε. Thus we have 
shown (g ◦ fn) −→ g ◦ f uniformly on E. 

7) a) First we claim that, for every x ∈ [0, 1], 

0 ≤ Pn (x) ≤ Pn+1 (x) ≤
√

x. 

This is clearly true for n = 0, so assume inductively that it is true for n = k and notice that 
√

x − Pk+1(x) = 
√

x − Pk(x) + 
1 � 

x − Pk(x)2
� 

2 

= 
√

x − Pk (x) − 
1 �√

x − Pk (x) 
� �√

x + Pk (x) 
� 

2 

= 
�√

x − Pk(x) 
� 

1 − 
1 �√

x + Pk(x) 
� 

≥ 0.
2 

It follows that Pk+1 (x) ≤
√

x, and then
 

1 � �
 
Pk+1 (x) − Pk (x) = 

2 
x − Pk (x)2 ≥ 0
 

shows that Pk (x) ≤ Pk+1 (x), and proves the claim. 
Notice that for every fixed x, the sequence (Pn (x)) is monotone increasing and bounded 
above (by 

√
x), it follows that this sequence converges, to say f (x). This function f (x) is 

non-negative and satisfies 
1 

f(x) = lim Pn+1(x) = lim Pn(x) + (x − Pn(x)2) = f(x) + (x − f(x)2) 
n−→∞ n−→∞ 2 

which implies f (x) = 
√

x, and hence the polynomials converge pointwise to 
√

x on [0, 1]. 
Since they are continuous and converge monotonically to a continuous function on [0, 1], a 
compact set, they converge uniformly (by Dini’s theorem). 

b) Here we use a something similar to problem 6 along with the above work to show that 
Pn(x2) −→ |x| on [−1, 1]. The difference between this and problem 6 is we need (fn ◦ g) −→ 
(f ◦ g), but this is easier. Given ε > 0, ∃N ∈ N with ∀x ∈ [0, 1], n > N , |Pn(x) −

√
x| < ε. 

So for all x ∈ [−1, 1], n > N , |Pn(x2) −
√

x2| < ε. Since |x| = 
√

x2, we have show that the 
polynomials Pn(x2) converge uniformly to |x| on [−1, 1]. 
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