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18.100B Problem Set 7 Solutions

Sawyer Tabony

We have a; > 0 and a;41 < a; for all ¢ = 0,1,2,...; and lima; = 0, and we want to show the
11— 00
convergence of
(o)
Z(—l)lai =ap— a1 +as — ...
i=0

So we define s,, to be the partial sums of the first n + 1 terms of the sum:

n
Sp = Z(—l)iai
1=0

So for any k € N, we have sop — sop_o = (—1)%Lagr_1 + (—1)%*agr = agr, — agp—1 < 0 by the
monotonicity of a,. Therefore sor < Sop_o, S0 sS9i is decreasing. Similarly, sop_1 is increasing.
Also, sop, — Sop_1 = (—1)%@21C = a9k > 0, SO Sop, > Sop_1. These combine to give sop_1 < Sop for
any k, k' = 0,1,2, ..., since choosing N > max{k, k’'}, we have

Sok—1 < San—1 < SoN < Sopr.

So sgr, and s9x_1 are both monotonic and bounded, so they each converge. However, sop, —sop_1 =
asy — 0, so they must converge to the same limit. Therefore s, converges, so the sum is
convergent.

Our function f is defined on (0,1) by

if, in lowest terms, x = P Q,
q q
0 ifz¢gQ.
First we show f is discontinuous at every rational. For r = Pe Q (in lowest terms), let € = %"
q
1 1 1
Then for any 6 > 0, 3x ¢ Q with r <x <r+46, s0 |[f(r) — f(zx)|=|-—0] = - > o0 =& This
q q q
proves discontinuity at r.
Now we want to show continuity at irrationals, so let z € Q, 0 < z < 1. Given ¢ > 0, we
need to find a § > 0 such that for every y with |z —y| < 4, |f(x) — f(y)| < e. Since f(z) =0
and f(y) > 0, we need f(y) < e. But € > 0 means we can find N € N with N < e. So

|f(y)| > € means y, when written in lowest terms, has denominator smaller than N. But there

are only finitely many fractions with denominator less than N between 0 and 1, so for some

M, {y M, = {y € (0,1)|f(y) > &}. So we let § = 1£n1<r}v[|x — y;|, which exists and is greater
(2

than 0 since there are only finitely many y;. Then if y € (0,1) is such that |z —y| < 8, y # v,
Vie{1,2,...., M}, so f(y) < e. Therefore f is continuous at .

We have f,g: M — N, and Q C M is dense.
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We need to show f(Q) is dense in f(M). So let K C N be closed, with f(Q) C K. Then by
continuity of f, f~1(K) is closed, and f~'(K) contains f~!(f(Q)) 2 Q. Since Q is dense in
M, f71(K) = M. Hence f(M) C K, so f(Q) is dense in f(M).

Now we have f = g on Q. Now consider the function ¢ : M — R, with

¢(z) = dn(f(2), 9(x))

for ds the distance function on V. Since dys, f, and g are all continuous, ¢ is also continuous.
Therefore ¢~1(0) is a closed set in M. But since f = g on Q,

Vo € Q, f(z) = g(z) = ¢(x) = dn(f(x),9(x)) = 0.
Thus Q C ¢~ 1(0), which is closed, so by density,
¢7H0) = M = Vz € M, 0= ¢(z) = dy(f(2),9(x)) = f(z) = g().

So we must find a continuous f : E — R with £ C R bounded and f(E) unbounded. Let

=00, /@)=

So E is clearly bounded, f(E) = (1,00) is unbounded, and f is continuous: at =z € (0,1),
given € > 0, let § = min{%, 22%c} > 0. Then
1 1 5 szl

2
=0 = f@) = 5=y =5 S g =5 <

And similarly, f(z) — f(z + J) < e. Since f is monotonically decreasing, this shows f is
continuous.

Now we have that f is uniformly continuous, and £ is bounded. So for e = 1, 30 > 0 such that
Ve,y € E,if [x—y| <9, |f(x)— f(y)| < 1. Eis bounded, so let B € N such that £ C [-B, B].

4B 1)
Then we can divide [—B, B] into [T] closed intervals of length 27 58 I, fori=1,2,....M.
Then choose z; € I; N E, when I; N E # (). Let C = max{|f(x;)|} + 1. Then for any z € E,
K2

x € I; for some i, so |z — z;| < g < 6. Thus, |f(x) — f(x:)| < 1,s0 |f(x)| <14 |f(x;)] < C.

So C bounds f(E).
This is the easiest one: let E = R, and f(x) = x. Then f is uniformly continuous by choosing
0 = e, since |f(x) — f(y)| = |z — y|, but E = f(E) =R are both unbounded.

: M — N is a uniformly continuous map between metric spaces.

We need to show that f preserves Cauchy sequences. So we are given that (x,) is Cauchy.
To show (f(z,)) is Cauchy, let € > 0. Then by uniform continuity, 3§ > 0 such that if
x,y € M with dyp(z,y) < 0, then dpa(f(z), f(y)) < e. Since (z,) is Cauchy, IN € N such
that Vn,m > N, dyp(zpn, ©m) < 8. Therefore, da(f(zn), f(zm)) < €, for all n,m > N. So
(f(xy)) is Cauchy.

We have g(x) = 22 on R. g is continuous, so given a Cauchy sequence (x,,) in R, it converges
by the completeness of R, so (g(x,)) is convergent by the continuity of g, so it is Cauchy. But
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g is not uniformly continuous: for any ¢ > 0, letting x = —~ we have

)
2

) )
g(m+§)2—g(az):(m2+1+z)—x2>1.

So for e = 1, no ¢ exists that satisfies uniform continuity on all of R.

We have defined

dp(x) = inf d(z, 2),
zeE

and we want to show that

|de(x) — de(y)| < d(z,y).
So fix ¢ > 0. Then 3zp € E with d(z,2) < dg(z) +e. Then d(y,z) < d(z,z) + d(z,y) <
dg(z) + e+ d(x,y) by the triangle inequality. Therefore,

de(y) = inf d(y,z) < dg(z) +e+d(x,y) = dp(y) — dp(z) < d(z,y) + ¢

for any € > 0. So dg(y) — dg(x) < d(z,y). By symmetry, dg(x) — dg(y) < d(z,y), so
|de(z) — de(y)| < d(z,y).

Uniform continuity follows immediately by letting § = ¢.

So now we have K, ' C M, with KNE = (, F closed and K compact. By the previous exercise,
dp is uniformly continuous, and thus continuous, positive function on K. Therefore dr attains its
minimum on K, by compactness. So 3z € K with dr(z) = infycx dr(y). Suppose this infimum
is 0. Thus dp(z) =0, so x is a limit point of F. But F is closed, sox € F=x € KNF =0, a
contradiction. Therefore inf,cx dp(y) = d > 0. Therefore Vp € K,q € F, d(p,q) > g > 0.

This doesn’t hold for arbitrary K, F C M closed. For a counterexample, take M = R? and
look at 1

K ={(z,y) Ry =0}, F = {(z,9) €R?|z > 0,y > —}
1

1
Both are closed, and for any 6 > 0, for N > 5 (N,0) € K and (N, —) € F, and the distance

2

1
betweent these is N < 0.
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