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18.100B Problem Set 7 Solutions
 
Sawyer Tabony 

1) We have ai > 0 and ai+1 ≤ ai for all i = 0, 1, 2, ..., and lim ai = 0, and we want to show the 

convergence of 
i→∞ 

∞ 

(−1)i ai = a0 − a1 + a2 − ... 
i=0 

So we define sn to be the partial sums of the first n + 1 terms of the sum: 
n 

sn = (−1)i ai 

i=0 

So for any k ∈ N, we have s2k − s2k−2 = (−1)2k−1a2k−1 + (−1)2ka2k = a2k − a2k−1 ≤ 0 by the 
monotonicity of an. Therefore s2k ≤ s2k−2, so s2k is decreasing. Similarly, s2k−1 is increasing. 
Also, s2k − s2k−1 = (−1)2ka2k = a2k > 0, so s2k > s2k−1. These combine to give s2k−1 < s2k� for 
any k, k� = 0, 1, 2, ..., since choosing N > max{k, k�}, we have 

s2k−1 ≤ s2N−1 < s2N ≤ s2k� . 

So s2k and s2k−1 are both monotonic and bounded, so they each converge. However, s2k −s2k−1 = 
a2k −→ 0, so they must converge to the same limit. Therefore sn converges, so the sum is 
convergent. 

2) Our function f is defined on (0, 1) by ⎧ ⎨1 p
if, in lowest terms, x = 

q 
∈ Q,

f = q⎩0 if x �∈ Q. 

First we show f is discontinuous at every rational. For r = 
p

q 
∈ Q (in lowest terms), let ε = 

2
1 
q 
. 

1 1 1
Then for any δ > 0, ∃x �∈ Q with r < x < r + δ, so |f(r) − f(x)| = | 

q 
− 0| = 

q
> 

2q 
= ε. This 

proves discontinuity at r. 
Now we want to show continuity at irrationals, so let x �∈ Q, 0 < x < 1. Given ε > 0, we 

need to find a δ > 0 such that for every y with < δ, f(x) − f(y) < ε. Since f(x) = 0|x − y| | | 
1

and f(y) ≥ 0, we need f(y) < ε. But ε > 0 means we can find N ∈ N with < ε. So 
N 

|f(y)| > ε means y, when written in lowest terms, has denominator smaller than N . But there 
are only finitely many fractions with denominator less than N between 0 and 1, so for some 

MM , {yi}i=1 = {y ∈ (0, 1) f(y) > ε}. So we let δ = min x − yi|, which exists and is greater | 
1≤i≤M

| 

than 0 since there are only finitely many yi. Then if y ∈ (0, 1) is such that x − y| < δ, y = yi 

∀i ∈ {1, 2, ...,M}, so f(y) < ε. Therefore f is continuous at x. 
| � 

3) We have f, g : M −→ N , and Q ⊆M is dense. 
1 



a) We need to show f(Q) is dense in f(M). So let K ⊆ N be closed, with f(Q) ⊆ K. Then by 
continuity of f , f−1(K) is closed, and f−1(K) contains f−1(f(Q)) ⊇ Q. Since Q is dense in 
M, f−1(K) = M. Hence f(M) ⊆ K, so f(Q) is dense in f(M). 

b) Now we have f = g on Q. Now consider the function φ : M −→ R, with 

φ(x) = d (f(x), g(x))N 

for dN the distance function on N . Since dN , f , and g are all continuous, φ is also continuous. 
Therefore φ−1(0) is a closed set in M. But since f = g on Q, 

∀x ∈ Q, f(x) = g(x) =⇒ φ(x) = dN (f(x), g(x)) = 0. 

Thus Q ⊆ φ−1(0), which is closed, so by density, 

φ−1(0) = M =⇒ ∀x ∈M, 0 = φ(x) = dN (f(x), g(x)) =⇒ f(x) = g(x). 

4) a) So we must find a continuous f : E −→ R with E ⊆ R bounded and f(E) unbounded. Let 

1 
E = (0, 1), f(x) = 

x 

So E is clearly bounded, f(E) = (1, ∞) is unbounded, and f is continuous: at x ∈ (0, 1), 
given ε > 0, let δ = min{x 1 x2ε} > 0. Then 2 , 3 

f(x − δ) − f(x) = 
x − 

1 
δ 
− 

x 
1

= 
x(x

δ 
− δ) 

≤ 
x 
3
1 

( 
x 

x 
2

2ε 

) 
= 

3
2 
ε < ε. 

And similarly, f(x) − f(x + δ) < ε. Since f is monotonically decreasing, this shows f is 
continuous. 

b) Now we have that f is uniformly continuous, and E is bounded. So for ε = 1, ∃δ > 0 such that 
∀x, y ∈ E, if x−y < δ, f(x)−f(y) < 1. E is bounded, so let B ∈ N such that E ⊆ [−B,B].| | |

4
|
B δ

Then we can divide [−B,B] into � 
δ 
� closed intervals of length 

2
, say Ii for i = 1, 2, ...,M . 

Then choose xi ∈ Ii ∩ E, when Ii ∩ E = ∅. Let C = max{|f(xi)|} + 1. Then for any x ∈ E,� 
i 

δ 
x ∈ Ii for some i, so |x − xi| ≤ 

2 
< δ. Thus, |f(x) − f(xi)| < 1, so |f(x)| < 1 + |f(xi)| ≤ C. 

So C bounds f(E). 
c) This is the easiest one: let E = R, and f(x) = x. Then f is uniformly continuous by choosing 

δ = ε, since |f(x) − f(y)| = |x − y|, but E = f(E) = R are both unbounded. 

5) f : M −→ N is a uniformly continuous map between metric spaces. 
a) We need to show that f preserves Cauchy sequences. So we are given that (xn) is Cauchy. 

To show (f(xn)) is Cauchy, let ε > 0. Then by uniform continuity, ∃δ > 0 such that if 
x, y ∈ M with dM(x, y) < δ, then dN (f(x), f(y)) < ε. Since (xn) is Cauchy, ∃N ∈ N such 
that ∀n, m > N , dM(xn, xm) < δ. Therefore, dN (f(xn), f(xm)) < ε, for all n, m > N . So 
(f(xn)) is Cauchy. 

b) We have g(x) = x2 on R. g is continuous, so given a Cauchy sequence (xn) in R, it converges 
by the completeness of R, so (g(xn)) is convergent by the continuity of g, so it is Cauchy. But 



1 
g is not uniformly continuous: for any δ > 0, letting x = we have 

δ 
δ δ2 

g(x + )2 − g(x) = (x 2 + 1 + ) − x 2 > 1.
2 4
 

So for ε = 1, no δ exists that satisfies uniform continuity on all of R.
 

6) We have defined 
dE (x) = inf d(x, z), 

z∈E 

and we want to show that 
|dE (x) − dE (y)| ≤ d(x, y). 

So fix ε > 0. Then ∃z0 ∈ E with d(x, z) < dE(x) + ε. Then d(y, z) ≤ d(x, z) + d(x, y) < 
dE (x) + ε + d(x, y) by the triangle inequality. Therefore, 

dE (y) = inf d(y, z) ≤ dE(x) + ε + d(x, y) = 
dE (y) − dE (x) ≤ d(x, y) + ε 
z∈E 

⇒


for any ε > 0. So dE (y) − dE (x) ≤ d(x, y). By symmetry, dE (x) − dE (y) ≤ d(x, y), so
 

|dE (x) − dE (y)| ≤ d(x, y).
 

Uniform continuity follows immediately by letting δ = ε.
 

7) So now we have K, F ⊆M, with K ∩ F = ∅, F closed and K compact. By the previous exercise, 
dF is uniformly continuous, and thus continuous, positive function on K. Therefore dF attains its 
minimum on K, by compactness. So ∃x ∈ K with dF (x) = infy∈K dF (y). Suppose this infimum 
is 0. Thus dF (x) = 0, so x is a limit point of F . But F is closed, so x ∈ F = x ∈ K ∩ F = ∅, a ⇒ 

δcontradiction. Therefore infy∈K dF (y) = δ > 0. Therefore ∀p ∈ K, q ∈ F , d(p, q) > > 0.2 
This doesn’t hold for arbitrary K, F ⊆ M closed. For a counterexample, take M = R2 and 

look at 
1 

K = {(x, y) ∈ R2|y = 0}, F = {(x, y) ∈ R2|x ≥ 0, y ≥ 
x
}

1 1
Both are closed, and for any δ > 0, for N > , (N, 0) ∈ K and (N, ) ∈ F , and the distance 

δ N
1

betweent these is < δ. 
N 
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