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1) We have X ⊆ M, with M complete. X is complete if and only if every Cauchy sequence of X 
converges to some x ∈ X. Let (xi) be Cauchy, with xi ∈ X. M being complete implies that 
→ y ∈ M. Therefore y is a limit point of X. So if X is closed, y ∈ X, so every Cauchy 

sequence converges in X, so X is complete. 
Conversely, suppose X is complete. Therefore every Cauchy sequence of X converges to a 

1
point in X. If y ∈ X �, then we can choose a sequence (xi) ⊆ X with d(xi, y) < , and since this 

i 
converges to y in M, it is Cauchy in X. Thus by completeness it converges in X, and by the 
uniqueness of limits, y ∈ X. Therefore X � ⊆ X, so X is closed. 

2) First, we know that if a sequence converges to some limit L, every subsequence of that sequence 
converges to L. This implies the ”only if” ( ) of both (a) and (b).⇒
a) To prove the ”if” ( ) of a), assume the sequences (x2n) and (x2n−1) both converge to the 

limit L. Then given
⇐
ε > 0 we can find natural numbers N and N � such that for 

n > N, n� > N � = ⇒ |x2n − L| < ε and |x2n�−1 − L| < ε. 

Let M = max{2N, 2N �} and notice that if m > M , then |xm − L| < ε regardless of whether 
m is even or odd. Therefore (xm) converges to L. 

b) Here, we reduce to the case of (a). Suppose x2n → A, x2n−1 → B, and x5n → C. Consider 
the sequence (x10n). This is a subsequence of (x2n), so it must converge to A. But is also a 
subsequence of (x5n), so it must converge to C. By the uniqueness of limits, we have A = C. 
Similarly (x10n−5) is a subsequence of both (x2n−1) and (x5n), so it must converge to both B 
and C, so B = C. Thus A = B = C, in particular A = B, so now we can apply (a). 

3) For any N ∈ N, {xn + yn|n > N} ⊆ {xm + yn|m,n > N}. Therefore 

sup(xn + yn) ≤ sup (xm + yn) = sup (xm) + sup(yn). 
n>N m,n>N m>N n>N 

Since this is true for all N ∈ N, it is true in the limit. So lim sup(xn +yn) ≤ lim sup xn +lim sup yn. 
By the above, and since lim inf(zn) = − lim sup(−zn) for any bounded sequence zn, 

lim inf(xn + yn) = − lim sup(−xn − yn) 

≥ − lim sup(−xn) − lim sup(−yn) = lim inf(xn) + lim inf(yn). 

Now we assume (xn) converges to some L. If lim sup yn = α, then some subsequence ynk α.→
Since xn → L, any subsequence converges to this limit, so in particular xnk → L. Therefore the 
sequence (xn + yn) has a subsequence (xnk + ynk ) that converges to L + α. Therefore 

lim sup(xn + yn) ≥ L + α = lim sup xn + lim sup yn ≥ lim sup(xn + yn), 

so we have equality. Once again the relation between limsup and liminf exploited above shows 
that equality also occurs for liminf, when (xn) converges. 

4) We have (xn) a bounded sequence and (an) the sequence defined as 
x1 + x2 + . . . + xn =an . 

n 
1 



� � � � 

� � 

ε
Let α = lim sup xn, and fix 1 > ε > 0. Then ∃N ∈ N such that ∀n > N , xn < α + 

2
, by the 

2BN 
definition of lim sup xn. Let B be an upper bound for xn. Then if n > ,

ε 
N n N n 

n n n 

α + ε x1 + x2 + . . . + xn B
 ε ε
xi xj + 2 + α + = α + ε.+
an =
 =
 ≤
 ≤
 
2
 2
2BN n
 

i=1 j=N+1 i=1 ε j=N+1 

So for n large enough, an ≤ α + ε. Therefore lim sup an ≤ α + ε. But ε can be chosen arbitrarily 
small, so lim sup an ≤ α. This also shows that − lim sup −xn ≤ − lim sup −an, or lim inf xn ≤
lim inf an. So we have 

lim inf xn ≤ lim inf an ≤ lim sup an ≤ lim sup xn. 

If xn x, then lim inf xn = lim sup xn = x, so by the inequality lim inf an = lim sup an = x, so 
an →

→ 
x. However, (an) can converge without (xn) converging. For example, let xn = (−1)n . 

Then ⎧⎨

 1

n odd,
− ⎩0 

Since both even and odd subsequences converge to 0, an 0. (xn), on the other hand, has →
its odd subsequence converging to -1 and its even subsequence converging to 1 (they are both 
constant subsequences). So (xn) does not converge. 

5) We have that 0 < x < 1 and xn = 1 −
√

1 − xn−1. Since the functions 1 − x and 
√

x both take 
the open interval (0, 1) to itself, by induction 0 < xn < 1 ∀n ∈ N. For any n ∈ N, we have 

=
 n
an 
n even.
 

1 − 1 − xn−1 = xn = ⇒ 1 − xn−1 = 1 − xn = ⇒ 1 − xn−1 = (1 − xn)2 < 1 − xn 

since 0 < (1 − xn) < 1. This shows that xn−1 > xn, so the sequence is decreasing. Therefore the 
sequence is decreasing and bounded below by 0, so it must have a limit L ≥ 0. Suppose L > 0. 
Then (1 − L)2 < 1 − L < 1, since it is clear by L < x1 < 1 that L < 1 ((xn) is strictly decreasing, 
so L < xn∀n ∈ N). Therefore 1 − (1 − L)2 > L, so ∃n ∈ N such that 

1 − (1 − L)2 > xn = ⇒ (1 − L)2 < 1 − xn = ⇒ 1 − L < 
√

1 − xn = ⇒ L > 1 −
√

1 − xn = xn+1 > L. 

This gives L > L, a contradiction. Therefore L = 0. 
Now to calculate the limit of 

xn+1 . We have
 
xn
 

xn+1 1 −
√

1 − xn (1 −
√

1 − xn) (1 + 
√

1 − xn) 1 − (1 − xn)
lim = lim = lim 

· 
= lim 

xn xn xn(1 + 
√

1 − xn) xn(1 + 
√

1 − xn)n→∞ n→∞ n→∞ n→∞
 

xn 1 1 1
 
= lim = lim = = . 

xn(1 + 
√

1 − xn) 1 + 
√

1 − xn 1 + 
√

1 − 0 2n→∞ n→∞ 

1
We can substitute the limit of xn into the limit because the function is continuous 

1 + 
√

1 − x
 
at 0, the limit of (xn).
 



� 

6) a) So the defining equation for Φ is 
a b

Φ = = 
b c
 

where a = b + c. So c (b + c) = b b which gives
· · �b�2 � b� 
= + 1 = Φ2 = Φ + 1 

c c 
⇒ 

Using the quadratic formula with x2 − x − 1 = 0, which Φ satisfies, we get 

1 ±
√

5
Φ = 

2
 

and since Φ was defined to be greater than 1, the ± sign must be a + sign.
 
b) We want to show that
 

1

Φ = 1 + ,

1 + 1 
1+ 1

11+ 1+··· 

where the right hand side is the limit of the sequence xn where x1 = 1 and xn = 1 + . 
xn−1 

First we must show that (xn) converges. It is clear that xn > 0, ∀n ∈ N. Now this gives 
1 1

that, since xn = 1 + , xn ≥ 1, ∀n ∈ N. And this implies ≤ 1, which gives that 
xn−1 xn 

1 
xn+1 = 1 + ≤ 2. So 1 ≤ xn ≤ 2. Now consider x2n−1, the odd terms of the sequence. The 

xn 
first few are:
 

1 1
 
x1 = 1 x3 = 1 + x5 = 1 + 

1 + 11 1 + 
1+

1 
1 

1+ 1 
1 

Analyzing these, we see that x1 < x3 < x5 < . . .. This is because to get from x2n−1 to x2n+1, 
you add a positive number to an even-numbered denominator of the continued fraction, which

1
makes it greater. Since x2n = 1 + , the even subsequence is 1 more than the inverses 

x2n−1 
of the odd sequence, which is increasing, so the even subsequence is decreasing. Since these 
subsequences are both bounded between 1 and 2 and are monotonic, they must have limits, 
say x2n−1 → a and x2n → b. We have 

1 1 1 
a = lim x2n+1 = lim 1 + = 1 + = 1 + . 

n→∞ n→∞ 1 + x2n 

1 
−1 

1 + lim x 
1 
2n−1 

1 + a 
1 

1 1 1 2 a(1 + ) = (1 + ) + 1 = a + 1 = 2 + = a = a + 1. 
a a 

⇒ 
a 

⇒ 

But this is exactly the quadratic equation that Φ satisfies. Since a ≥ 1, a = Φ. Exactly the 
same argument works for b, since the relation between x2n+2 and x2n is identical. Therefore 
b = Φ, which implies (by problem 2) that xn → Φ. 

c) Now we want to show that yn → Φ for the sequence (yn) defined by 

y1 = 1, and yn = 1 + yn−1. 

1 



It is clear that yn ≥ 1, since by induction y2 = 1 + yn−1 ≥ 2. Also, y1 < Φ and n 

yn−1 < Φ =⇒ yn−1 + 1 < Φ + 1 =⇒ yn = 
� 

1 + yn−1 < 
√

Φ + 1 = Φ. 
2So by induction, yn < Φ. So 1 ≤ yn < Φ gives that yn − yn − 1 < 0, or yn < 

√
1 + yn = yn+1. 

Thus (yn) is an increasing sequence that is bounded above, so it converges to some limit, c. 
We have � � 

c = lim yn = lim 1 + yn−1 = 1 + lim yn−1 = 
√

1 + c. 
n→∞ n→∞ n→∞ 

2So now c = 
√

1 + c which gives c = c + 1, and since c > 1, we once again have c = Φ. 
d) Now we define z1 = z2 = 1, and zn = zn−1 + zn−2 for n > 2. Let’s define xn = 

zn+1 . So we 
zn 

have 

x1 = 
z2 = 

1 
= 1, and xn = 

zn+1 = 
zn + zn−1 = 1 + 

zn−1 = 1 + 
1 

z1 1 zn zn zn xn−1 

But this is exactly the same as the (xn) from a)! Exxxxxcellent... it’s all falling into place. 
We have shown xn → Φ, so the ratios of consecutive Fibonacci numbers approaches Φ. 
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