18.100B Problem Set 5 Solutions

Sawyer Tabony

1) We have X C M, with M complete. X is complete if and only if every Cauchy sequence of X
converges to some z € X. Let (z;) be Cauchy, with x; € X. M being complete implies that
z; — y € M. Therefore y is a limit point of X. So if X is closed, y € X, so every Cauchy
sequence converges in X, so X is complete.

Conversely, suppose X is complete. Therefore every Cauchy sequence of X converges to a

1
point in X. If y € X', then we can choose a sequence (z;) C X with d(z;,y) < —, and since this
i

converges to y in M, it is Cauchy in X. Thus by completeness it converges in X, and by the
uniqueness of limits, y € X. Therefore X’ C X, so X is closed.

2) First, we know that if a sequence converges to some limit L, every subsequence of that sequence
converges to L. This implies the ”only if” (=) of both (a) and (b).
a) To prove the "if” (<) of a), assume the sequences (z2,) and (z2,-1) both converge to the
limit L. Then given € > 0 we can find natural numbers N and N’ such that for

n>N,n'">N = |r9, — L| <& and |z9,_1 — L| < &.

Let M = max{2N,2N’} and notice that if m > M, then |z, — L| < ¢ regardless of whether
m is even or odd. Therefore (z,,) converges to L.

b) Here, we reduce to the case of (a). Suppose z2, — A, 2,1 — B, and x5, — C. Consider
the sequence (z19,). This is a subsequence of (x2,), so it must converge to A. But is also a
subsequence of (x3,), so it must converge to C. By the uniqueness of limits, we have A = C.
Similarly (z10n—5) is a subsequence of both (z2,—1) and (x3,), so it must converge to both B
and C, so B=C. Thus A= B = C, in particular A = B, so now we can apply (a).

3) For any N € N, {z,, + yn|n > N} C {zs, + yn|m,n > N}. Therefore

sup (zn, + yn) < sup (T + yn) = sup (Tm) + sup (yn)-
n>N m,n>N m>N n>N

Since this is true for all N € N it is true in the limit. So lim sup(x,+y,) < lim sup z,, +lim sup y,,.
By the above, and since liminf(z,) = — limsup(—z,,) for any bounded sequence z,,

liminf(z, + yp) = — limsup(—z, — yn)
> —limsup(—x,) — limsup(—y,) = liminf(z,,) + lim inf(y,).
Now we assume (x,) converges to some L. If limsupy, = «, then some subsequence y,, — a.

Since z, — L, any subsequence converges to this limit, so in particular x,, — L. Therefore the
sequence (z, + ypn) has a subsequence (z,, + yn,) that converges to L + a. Therefore

limsup(zy, + yn) > L + a = limsup z,, + limsup y,, > limsup(z,, + yn),

so we have equality. Once again the relation between limsup and liminf exploited above shows
that equality also occurs for liminf, when (z,) converges.

4) We have (z,) a bounded sequence and (a,) the sequence defined as
o 1+ X2+ ...+

n
1

Gnp
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Let a = limsupz,, and fix 1 > & > 0. Then 3N € N such that Vn > N, z, < a + %, by the

2BN
definition of lim sup x,. Let B be an upper bound for x,,. Then if n > ,

£
n N n
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So for n large enough, a, < o+ €. Therefore limsup a, < a+¢. But € can be chosen arbitrarily
small, so limsupa, < «a. This also shows that —limsup —z,, < —limsup —a,, or liminf x, <
liminf a,,. So we have

liminf x,, < liminf a, <limsupa, < limsup z,.

If , — x, then liminf x,, = limsup z,, = z, so by the inequality lim inf a,, = limsupa,, = z, so

a, — x. However, (a,) can converge without (z,) converging. For example, let =, = (—1)".
Then

an=14 n

0 n even.

n odd,

Since both even and odd subsequences converge to 0, a, — 0. (z,), on the other hand, has
its odd subsequence converging to -1 and its even subsequence converging to 1 (they are both
constant subsequences). So (z,) does not converge.

We have that 0 < 2 < 1 and x, =1 — /T — 2,,_1. Since the functions 1 —  and /= both take
the open interval (0, 1) to itself, by induction 0 < z,, < 1 Vn € N. For any n € N, we have

l—1—zp == /l—ap1=1—-a,=1—-zp1=1—2,)’<1—2z,

since 0 < (1 — ) < 1. This shows that x,,_1 > z,, so the sequence is decreasing. Therefore the
sequence is decreasing and bounded below by 0, so it must have a limit L > 0. Suppose L > 0.
Then (1—L)?2 <1—L < 1, since it is clear by L < 1 < 1 that L < 1 ((x,,) is strictly decreasing,
so L < x,¥n € N). Therefore 1 — (1 — L)? > L, so 3n € N such that

—1-L¥>z,—= (1-L)?*<1-2,=1-L<Vli—2z,=L>1—-vV1—x, =x,41 > L.
This gives L > L, a contradiction. Therefore L = 0.
Now to calculate the limit of ~**L. We have

Tn
o Tpgr o 1= T—xy L (=T —x,) - (1+V1—z,) 1—(1—x,)
lim —— = lim ————— = lim = lim
e @y e @, e aa(l vl an) W 2L+ VI =)

. T, . 1 1 1
= lim = lim = = —.
n—oo x,(1+ 1 —x,) nocl4+/1—-—x, 1+/1-0 2
We can substitute the limit of x,, into the limit because the function ————— is continuous

1++vV1—2x

at 0, the limit of (z,,).



6) a) So the defining equation for ® is

a b
@:7:7
b ¢

where a =b+c. So ¢ (b+¢) =b-b which gives
2
(9) = <9> 1= 2=d+1
c c
Using the quadratic formula with 22> — 2 — 1 = 0, which ® satisfies, we get
_1+45
2

and since ® was defined to be greater than 1, the £ sign must be a + sign.
b) We want to show that

o

1
=14+ —v—,
+ ——
1
where the right hand side is the limit of the sequence x,, where z1 = 1 and z,, = 1+ .
Tp—1

First we must show that (z,) converges. It is clear that z, > 0, Vn € N. Now this gives

1
, Tn > 1, Vn € N. And this implies — < 1, which gives that
Tn—1 T,

that, since z, = 1 +

1
Tpg1 =1+ . <2.S01 <z, <2. Now consider xs,_1, the odd terms of the sequence. The

n
first few are:

1 1
33‘1:]_ :1;‘3:]_—|— T 1;5:]_4_71
1+ 1 1+ P —
1
1+1
Analyzing these, we see that z1 < 3 < x5 < .... This is because to get from x9,_1 to Top11,

you add a positive number to an even-numbered denominator of the continued fraction, which

makes it greater. Since xa, = 1 + , the even subsequence is 1 more than the inverses

T2n—1
of the odd sequence, which is increasing, so the even subsequence is decreasing. Since these

subsequences are both bounded between 1 and 2 and are monotonic, they must have limits,
say Ton_1 — a and 9, — b. We have

1 1 1
a=lim zgpq1 = lim 14 ——— =14+ ——— =1+ —.
e oo 1 Ton—1 L+ limzon,_1 1+5
1 1 1 )
al+-)=(14+-)4+1=a+1=24+-=0a"=a+1.
a a a

But this is exactly the quadratic equation that & satisfies. Since a > 1, a = ®. Exactly the
same argument works for b, since the relation between x2,12 and x, is identical. Therefore
b = ®, which implies (by problem 2) that z, — ®.

¢) Now we want to show that y, — ® for the sequence (y,) defined by

y1 =1, and ¥, = /1 + yn—1.



It is clear that y, > 1, since by induction y2 = 1 +y,_1 > 2. Also, y; < ® and

Y1 <P=yp 1 +1 <P+l =y, =14y, 1 <VO+1=0.

So by induction, y, < ®. So 1 <y, < ® gives that y2 —y, —1 <0, or yp < /T + Un = Ynt1-.
Thus (y,) is an increasing sequence that is bounded above, so it converges to some limit, c.

We have
c= lim y, = lim /14+y,—1=,/1+ lim y,—1 =Vv1+ec
n—oo n—oo

n—oo

So now ¢ = /1 + ¢ which gives ¢ = ¢+ 1, and since ¢ > 1, we once again have c = ®.

Zn+1
Now we define 21 = 20 = 1, and z,, = z,_1 + zn_2 for n > 2. Let’s define z,, = "1 So we
Zn
have
29 1 241 Zn + Zp—1 Zn—1 1
r1=—=-=1,and z,, = ntl o =14+ =1+
21 1 Zn Zn Zn Tn—1

But this is exactly the same as the (z,,) from a)! Exxxxxcellent... it’s all falling into place.
We have shown x,, — @, so the ratios of consecutive Fibonacci numbers approaches .
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