18.100B Problem Set 3 Solutions

Sawyer Tabony

1) We begin by defining d : V x V' — R such that d(z,y) = ||z — y||. Now to show that this
function satisfies the definition of a metric. d(z,y) = ||z — y|| > 0 and

dlz,y) =0<=|lz—y|=0<=z—-y=0<—=z=y
So the function is positive definite.
dz,y) = le—yll = I =Ly =)l = [ = Ully — 2] = ly — 2] = d(y,z)
Thus the function is symmetric. Finally,
d(z,2) = |lz — 2| = [z —y+y — 2| < llz =yl + lly — 2ll = d(z, y) + d(y, 2)

So the triangle inequality holds. Therefore d is a metric.

2) Once again we must verify the properties of a metric. We have defined d; as

_ d(z,y)
di(z,y) = T+ d(z.y)

Since d is a metric, it only takes nonnegative values, so d; cannot be negative. di(x,y) is zero
exactly when d(x,y) is, so only for x = y. Therefore d; is positive definite. Since d is symmetric,
dy obviously inherits this property. Finally, for x,y,z € M

_d(z,y) dly,z) _ d(z,y) +d(y,z) + 2d(z,y)d(y, 2)
di(z,9) + dily, 2) = L+d(z,y)  1+d(y,z) 1+d(z,y)+dy,z)+dz,y)d(y, 2)
d(z,y) +d(y,2) +d(z,y)dly,2) _, 1
~ 1+d(x,y) +d(y, 2) + d(z,y)d(y, 2) 1+d(z,y) +d(y,z) + d(z,y)d(y, 2)
1 1 _d(x,2)
21- 1+d(z,y) +d(y, 2) z1- L+d(z,2)  1+d(z,2)

=di(z,2)

So the triangle inequality holds, thus we have a metric. It is easy to see that this metric never
takes on a value larger than 1, since d(x,y) < 1+ d(z,y), so under the metric d;, M is bounded.

3) a) A, B C M, M a metric space. Suppose z € A° U B°. Without loss of generality, say x € A°.
Therefore z is an interior point of A, so de > 0 such that the ball of radius € centered at z is
contained in A, or B.(z) C A. Since A C AU B,

Be(x) CAUB =z € (AUB)°

This shows that A°U B° C (AU B)°.

b) Now let © € A° N B°. Therefore x € A°, so x is an interior point of A, hence Je; > 0 such
that B, (z) C A. Similarly, z € B® = Je3 > 0 such that B.,(z) C B. Let 6 = min (e1,¢2).
By the triangle inequality,

d <& = Bs(z) C Be,(x) = Bs(z) € A and Bs(z) C B.

Therefore Bs(z) C AN B, so x is an interior point of AN B. Hence A°N B° C (AN B)°.
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Let x € (AN B)°. So Je > 0 with B.(x) € AN B. Therefore B.(z) C A so x € A°, and
similarly x € B°. So x € A° N B°. Thus (AN B)° C A°N B°. So these two sets are equal.

Let A= (—1,0] and B = [0,1). Then 0 is an interior point of neither A nor B, so 0 ¢ A°U B°.
But AUB = (—1,1),s0 0 € (AU B)°. Therefore in this instance the two sets are unequal.

4) a) If x € OA then every ball around z intersects A and A°. Thus x € A and x is a limit point of
A or x € A° and z is a limit point of A. Either way, x € AN A¢, and hence 94 C AN Ac.

Now let z € AN A°. Since x € A, either x € A or z is a limit point of A, and in both cases any
open ball around x intersects A. Similarly, z € A¢ implies any open ball around z intersects
A°. Therefore x € 0A, so AN A¢ C QA. So these two sets are equal.

b) Let p € OA. By a), p € A. Suppose p € A° then 3¢ > 0 such that B.(p) C A. But this is an
open ball centered at p which does not intersect A¢ so p € 0A. This contradiction implies
that p & A°.

Now suppose p € A\ A°. For any € > 0, p € A gives that B.(x) intersects A, and ggz A°
implies that B.(z) € A, so B:(x) intersects A°. So p € A, and this shows that A = A\ A°.

c) By a), 0A can be written as the intersection of two closed sets. Thus 0A is closed.
d) Suppose A is closed. Then A = A, so by a)
OA=ANAc=ANAC A

Converesely, note that for any set B, if z ¢ B and x ¢ 0B, then there is a positive 7 > 0 such
that B, () C B¢ and hence x ¢ B. This implies that

for any set B, B C BUJB.
Soif )AC A, then AC AUOA=AC Aie., A= A hence A is closed.

5) We will show that S, (z) := {y : d(x,y) = r} is the boundary of B, (z). It will follow from the
previous exercise that

B, () = 0B, (x) UB, (z) ={y : d(z,y) <r}.

It is clear that if y is such that d(x,y) = r then y € 9B, (x) since any ball around y will
have points that are closer to x and points that are further away. We just have to show that if
d(z,y) # r, then y is not in 9B, ().

But if d (z,y) < r then for any 0 < ¢ < r — d (z,y) the ball of radius € around y is all inside
B, (z) and y ¢ 0B, (x); and if d (z,y) > r then for any 0 < 0 < d(x,y) — r the ball of radius ¢
around y is all outside of B, (x) so that again y ¢ 0B, (x). Thus 0B, (x) is precisely S, () and
we are done.

Here is an example of a different metric space where this result is not true: Consider R™ with

the discrete metric,
~ 0 ifz=y
d(z,y) = :
1 ifz#y



and the ball around any point p with radius 1:

Bi(p)={q:d(p.q) <1} ={p}, while {q:d(p,q) <1}=R".
Notice that the open ball is finite and hence closed. In particular, the closure of Bj (p) is just
{pr} and not {q: d(p,q) <1}.

We need to show that K is compact or that every open cover of K contains a finite subcover.
Let {Z/Ia}aeA be an open cover of K, so
1

ﬁ}g Uua:ﬂaoeAsuchthatOGUao

a€cA

1
K={0,1,-,..
{?727

Since Uy, is open, Je > 0 with B:(0) C U,,. Because £ > 0, there exists an N € N such that
n>N — % < ¢. Hence the open set U,, contains all of the % with n > N, i.e., it contains
all but finitely many elements of K.

1 1
Now, for ¢ =1,2,...,N, - € K. So Jo;; € A such that — € U,,. So we have shown that
i i

N
K C | U,
i=0
a finite subcover of {U, }aca. So every open cover of K contains a finite subcover, which shows
that K is compact.

We have {U, }aca an open cover of K. Define
Van ={2 € Uy|B1(x) CUL}° for all « € A,n e N.
The U,, are open, so for any point x € U,, there is some n € N such that
B2 (z) CUy = Bi(x) C{y € Ua|B1(y) CUp} = = € Vi, 5. Hence U Van =Uy.
So taking the union over all a € A, we have

UVen=JU. 2 K

acA acA
neN

S0 {Vantaca is an open cover of K (each set is an interior, thus open). By the compactness
neN
N

of K, there exists a finite subcover {Vai’ni}izl'

{1,2,...,n} with

Let § = ( max n;)~!. Then Vo € K, 3i' €
1<i<N

S V‘li’»”i/ — B 1 (.T) - u%'"
nil

1
Since 6! = max n; > ny, we have § < —, so Bs(x) € Ba1 C U, . Thus our § has the
1<i<N ngt it v

prescribed property.
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