
18.100B Problem Set 3
 

Due Friday September 29, 2006 by 3 PM 

Problems: 

1) (10 pts) In vector spaces, metrics are usually defined in terms of norms which measure the length 
of a vector. If V is a vector space defined over R, then a norm is a function from vectors to real 
numbers, denoted by �·� satisfying: 

i) �x� ≥ 0 and �x� = 0 
 x = 0,
 
ii) For any λ ∈ R, �λx� = 

⇐⇒

|λ|�x�,
 

iii) �x + y� ≤ �x� + �y�.
 
Prove that every norm defines a metric. 

2) (10 pts) Let M be a metric space with metric d. Show that d1 defined by 

d (x, y)
d1 (x, y) = 

1 + d (x, y)
 

is also a metric on M . Observe that M itself is bounded in this metric.
 

3) (10 pts) Let A and B be two subsets of a metric space M . Recall that A◦, the interior of A, is 
the set of interior points of A. Prove the following: 

a)A◦ ∪ B◦ ⊆ (A ∪ B)◦ , b)A◦ ∩ B◦ = (A ∩ B)◦ 

Give an example of two subsets A and B of the real line such that A◦ ∪ B◦ = (� A ∪ B)◦. 

4) (10 pts) Let A be a subset of a metric space M . Recall that A, the closure of A, is the union of 
A and its limit points. Recall that a point x belongs to the boundary of A, ∂A, if every open 
ball centered at x contains points of A and points of Ac, the complement of A. Prove that: 
a) ∂A = A ∩ Ac, 
b) p ∈ ∂A ⇐⇒ p is in A, but not in A◦ (symbolically, ∂A = A \ A◦),‘ 
c) ∂A is a closed set, 
d) A is closed ⇐⇒ ∂A ⊆ A. 

5) (10 pts) Show that, in Rn with the usual (Euclidean) metric, the closure of the open ball BR (p), 
R > 0, is the closed ball 

{q ∈ Rn : d (p, q) ≤ R}. 

Given an example of a metric space for which the corresponding statement is false. 

6) (10 pts) Prove directly form the definition that the set K ⊆ R given by 

1 1 1 
K = {0, 1, , , . . . , . . .}

2 3 n
 

is compact.
 

1 



7) (10 pts) Let K be a compact subset of a metric space M , and let {Uα}α∈I be an open cover of 
K. Show that there is a positive real number δ with the property that for every x ∈ K there is 
some α ∈ A with 

Bδ (x) ⊆ Uα. 

Extra problems: 
1) Let M be a non-empty set, and let d be a real-valued function of ordered pairs of elements of M 

satisfying 
i) d (x, y) = 0 x = y,⇐⇒ 
ii) d (x, y) ≤ d (x, z) + d (y, z).
 

Show that d is a metric on M .
 

2) Determine the boundaries of the following sets, A ⊆ X: 
i) A = Q, X = R 
ii) A = R \ Q, X = R 
iii) A = (Q × Q) ∩ BR (0), X = R2 

3) Describe the interior of the Cantor set. 

4) Let M be a metric space with metric d, and let d1 be the metric defined above (in problem 2). 
Show that the two metric spaces (M,d), (M,d1) have the same open sets. 
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