
SOLUTIONS TO PS2
 Xiaoguang Ma 

Problem 1. 

Proof. It is true that for any two sets A, B, the intersection A ∩ B is a subset of 
A. Now consider φ = A ∩ Ac . So φ is a subset of A for any set A. � 

Problem 2. 

Proof. Notice that 

||x| − |y|| ≤ |x − y| ⇔ |x| − |y| ≤ |x − y| and |y| − |x| ≤ |x − y|. 

So we only need to prove that 

|x| ≤ |x − y| + |y| and |y| ≤ |x − y| + |x|. 

But both of them is a consequence from the triangle inequality |a − b| ≤ |a − c| + 
|b − c|. � 

Problem 3. 

(a) M = { |x|1+|x| : x ∈ R}. 

Proof. Notice that 
|x| 

= 1 

1 
1 + |x| |x| + 1 

so if |x| < |y| then 
|x| 

< 
|y| 

.
1 + |x| 1 + |y|

Thus the supremum is 1 = 1 and the infimum is 0 = 0. �0+1 1+0 

(b) M x x > −1}.= { 1+x |

Proof. We can change the variable x to y, 

1 + 
x

x 
= 

y − 
y 

1 
= 1 − 

y 
1 
, 

where y = x + 1. From x > −1, we have y > 0. Notice that 
1 1 

y increases ⇒ 
y 

decreases ⇒ (1 − 
y 
) increases, 

so the supremum is 1 − 0 = 1 and the infimum is −∞ (because for every N > 1 we 
have � � 

N 
1 �−N � = −N 

1 + N 
1−N 

and so the infimum is less than −N). � 
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(c) M = {x + 1 |1/2 < x < 2}. x 

Proof. It is always true that 
a + b √

ab,
2 

≥ 

for instance, if square both sides and rearrange, this is the same as saying a2+b2 ≥ 0. 
Thus, we see that 

1 1 
x + 

x 
≥ 2 x

x 
= 2 

Since setting x = 1 in x + x 
1 we get 2, we know that infM = 2. 

Suppose we have x1 > x2, consider 

1 1 
x1 + − (x2 + ) 

x1 x2 

= (x1 − x2) + 
x2 − x1 

x1x2 

(x1 − x2)(x1x2 − 1)
= 

x1x2 

So if x1, x2 > 1, then 

x1 +
1 

x2 +
1 

=
(x1 − x2)(x1x2 − 1) 

> 0, 
x1 
− 

x2 x1x2 

i.e. x + x 
1 is an increasing function; if x1, x2 < 1, then 

x1 + 
x

1 

1 
− x2 + 

x

1 

2 
=

(x1 − x2

x

)(
1x

x

2

1x2 − 1) 
< 0, 

i.e. x+ x 
1 is an decreasing function. Then the sup must be obtained at the boundary 

of (1/2, 2). 
Since � � � �

1 1 5
lim x + = lim x + = , 
x→2 x x→1/2 x 2 

we have supM = 2
5 . � 

Problem 4. 

Proof. The answer is: 

n 30 42 66 78 102 114 138 174 186 70 110 
p1 2 2 2 2 2 2 2 2 2 2 2 
p2 3 3 3 3 3 3 3 3 3 5 5 
p3 5 7 11 13 17 19 23 29 31 7 11 

n 130 170 190 154 182 105 165 195 
p1 2 2 2 2 2 3 3 3 
p2 5 5 5 7 7 5 5 5 
p3 13 17 19 11 13 7 11 13 
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Problem 5. 

Proof. From X ∼ R, then there is a 1 − 1 mapping α : X → R. Similarly we have 
a 1 − 1 mapping β : Y → N. So to prove Z = X ∪ Y ∼ R, we only need to prove 
that there is a 1 − 1 mapping γ : Z → R. It is equivalent to show that there is 1 − 1 
mapping δ : N ∪ R → R. The δ can be constructed by the following method: 

δ(x) = x , if x ∈ R\Z; 
δ(x) = x , if x ∈ Z ⊂ R and x ≤ 0; 
δ(x) = 2x , if x ∈ Z ⊂ R and x > 0; 

δ(x) = 2x + 1 , if x ∈ N. 

It is easy to check that it is an 1 − 1 mapping. � 

Problem 6. 

Proof. Consider the sets 
1 

A0 = { 
n 
|n ∈ N}, 

1 
A1 = { 

n 
+ 1|n ∈ N}, 

1 
A2 = { 

n 
+ 2|n ∈ N}. 

Then Ai has only one limit point i, for i = 0, 1, 2. If let A = 
� 

i 
2
=0 Ai, we get a 

bounded set A with three limit points. 
Consider the set 

1 1 A = { + : n, m ∈ N}, 
n m 

we check that the limit points of A are precisely the points in A0 ∪ {0}. Indeed, if 
we fix n0 ∈ N then the set 

1 1 { 
n0 

+ 
m 

: m ∈ N}, 

has 1 as a limit point and is a subset of A, hence A has 1 as a limit point, for n0 n0 

any n0 in N. Also A0 ⊆ A so zero is a limit point of A. To see that there are no 
other limit points, pick a point x ∈ R that is not equal to 1 for any n ∈ N, we show n 
that x is not a limit point of A. We can find N ∈ N such that 

1 1 
< x < 

N N − 1 
Pick ε > 0 small enough so that 

1 1 
< x − ε < x < x + ε < 

N N − 1 

and notice that there are at most finitely many elements of A in (x − ε, x + ε). Here 
is one way to see this: if n and m are both bigger than 2N then 1 + 1 < 1 , if n m N 
n < N then 1 + 1 > 1 

−1 , while if 2N ≥ n > N then n m N 

1 
< 

1
+

1 1 
< 

1 1
= 

N − n 
m < 

nN
,


N n m 
⇐⇒ − 

m n 
− 

N nN 
⇐⇒ 

n − N


finally if n = N , and m is large enough then 1 + 1 < x − ε. So there are finitely
n m 
many possible pairs (n, m) with x − ε < 1 + 1 < x + ε. n m 



� 
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Since there are only finitely many elements of A inside (x − ε, x + ε) we can find 
k ∈ N so that (x − ε , x + ε ) contains no element of A except possibly x itself. This k k 
proves that x is not a limit point of A. 

Problem 7. 

Proof. (a) The points in E0 are interior points of E, to show that E0 is open we 
need to show that they are interior points of E0 . Given x ∈ E0, by definition, there 
exist a open ball x ∈ Br(x) ⊂ E. Consider an open ball Br/3(x) ⊂ Br(x). Then 
for any point y ∈ Br/3(x), Br/3(y) ⊂ Br(x) ⊂ E, so y ∈ E0 . Then Br/3(x) is an 
open ball in E0 . So x is an interior point of E0 . 

(b)If E = E0, from (a) we know that E is open. Conversely, if E is open, all 
points in E are interior points, so E ⊂ E0 . From E0 ⊂ E we have E = E0 . 

(c)Since G is open, so for any point g ∈ G, we have an open ball Br(g) ⊂ G ⊂ E. 
So g is also an interior point of E. Then G ⊂ E0 . � 
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