SOLUTIONS TO PS2
Xiaoguang Ma

Problem 1.
Proof. It is true that for any two sets A, B, the intersection A N B is a subset of
A. Now consider ¢ = AN A°. So ¢ is a subset of A for any set A. (]
Problem 2.

Proof. Notice that
] = lyll < o =yl < |z = [y < o —y[ and [y| = |z] < |z —y].
So we only need to prove that
|z < |z =yl + [yl and |y| < |z —y| + [z].

But both of them is a consequence from the triangle inequality |a — b| < |a — ¢| +
|b—¢. O

Problem 3.

(a)M:{lf“w‘ cx € R}

Proof. Notice that
= 1

1+\x|_ﬁ+1

so if |z| < |y| then

ol vl
1+ x| 1+ y|
Thus the supremum is ﬁ =1 and the infimum is % =0. ]

(b)) M = {5z > —1}.
Proof. We can change the variable = to y,
T y—1 1

= :1—77
14z Y Y

where y = x + 1. From x > —1, we have y > 0. Notice that

. 1 1.
y increases = — decreases = (1 — —) increases,
Y Y

so the supremum is 1 —0 = 1 and the infimum is —oco (because for every N > 1 we

have
),
1+ (%)

and so the infimum is less than —N). O
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() M ={z+Li1/2<2<2}.

Proof. 1t is always true that

CL;FbZ\/%7

for instance, if square both sides and rearrange, this is the same as saying a?+b% > 0.

Thus, we see that
1 1
T+ —>20/x—=2
x V52

Since setting z =1 in « + % we get 2, we know that infM = 2.
Suppose we have x1 > x9, consider

1 1
1+ — —(z2+ —)

Z1 Zo

To — T

= (21 —x2) + 2 !

T1T2

_ (@ — @) (mas — 1)

19
So if 1,25 > 1, then
1 - -1
it g ()= ey,

1 T2 T1X2

1 - -1
1+ — — <x2 + > = (21 — 22)(2122 — 1) <0,
X1 T2 12
i.e. x—l—% is an decreasing function. Then the sup must be obtained at the boundary
of (1/2,2).
Since
. 1 . 1 5
lm({z4+—)= lim (24— )=,
T—2 T z—1/2 T 2
we have supM = g ([
Problem 4.

Proof. The answer is:

n 30 42 66 78 102 114 138 174 18 70 110
pl 2 2 2 2 2 2 2 2 2 2 2
p2 3 3 3 3 3 3 3 3 3 5 5
p3 5 7 11 13 1v 19 23 29 31 7 11

n 130 170 190 154 182 105 165 195
pl 2 2 2 2 2 3 3 3
p2 5 5 5 7 7 5 5 5
p3 13 17 19 11 13 7 11 13
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Problem 5.

Proof. From X ~ R, then there is a 1 — 1 mapping « : X — R. Similarly we have
al—1 mapping #:Y — N. So to prove Z = X UY ~ R, we only need to prove
that there is a 1 — 1 mapping v : Z — R. It is equivalent to show that there is 1 —1
mapping d : NUR — R. The § can be constructed by the following method:

o(z)==x , if z € R\Z;
d(z)==x ,ifreZcRand x<0;
d(z)=2¢ ,ifzxeZCRand z >0
0(z)y=22+4+1 ,ifzeN.
It is easy to check that it is an 1 — 1 mapping. O
Problem 6.
Proof. Consider the sets
1
Ay = {- N
0 {n|n € }7
1
A1 = {E + 1|n S N},
1
Ay = {E+2|R€N}

Then A; has only one limit point 4, for ¢ = 0,1,2. If let A = U?:o A;, we get a
bounded set A with three limit points.
Consider the set

1 1
Az{g—l—E:n,mEN},

we check that the limit points of A are precisely the points in Ag U {0}. Indeed, if
we fix ng € N then the set

1 1
~ 4~ :meN
{n0+m m € N},

has nio as a limit point and is a subset of A, hence A has ni as a limit point, for
any ng in N. Also Ay C A so zero is a limit point of A. To see that there are no
other limit points, pick a point z € R that is not equal to % for any n € N, we show
that x is not a limit point of 4. We can find N € N such that

1 1

N <z < N1

Pick € > 0 small enough so that

1

—<zr—e<r< <
N r—e<zr<x+te ]
and notice that there are at most finitely many elements of A in (z —e,z+¢). Here
is one way to see this: if n and m are both bigger than 2N then % + % < L if

N
n<Nthenl+%>ﬁ,whileif2N2n>Nthen

n

11,1 1_1_1_N-n _ N
N n m m n N  aN SN

finally if n = IV, and m is large enough then % + i < x —e. So there are finitely
many possible pairs (n,m) with x — e < % + % <x+e.
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Since there are only finitely many elements of A inside (x — e,z 4+ £) we can find
k € N so that (z — £, 2+ £) contains no element of A except possibly x itself. This

proves that x is not a limit point of A.
O

Problem 7.

Proof. (a) The points in E° are interior points of E, to show that E° is open we
need to show that they are interior points of EY. Given 2 € E°, by definition, there
exist a open ball x € B,(r) C E. Consider an open ball B, 3(x) C B,(x). Then
for any point y € B, /3(x), B,/3(y) C Br(z) C E, so y € E°. Then B, 3(x) is an
open ball in E°. So z is an interior point of E°.

(b)If E = E°, from (a) we know that E is open. Conversely, if E is open, all
points in E are interior points, so E C E°. From E° C E we have E = EY.

(c)Since G is open, so for any point g € G, we have an open ball B,.(g) C G C E.
So g is also an interior point of E. Then G C E°. O
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