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18.100B Problem Set 1 Solutions
 
Sawyer Tabony 

1) The proof is by contradiction. Assume ∃r ∈ Q such that r2 = 12. Then we may write r as a 
b 

with a, b ∈ Z and we can assume that a and b have no common factors. Then
 � a �2 a2
 

12 = r 2 = = ,
 
b b2 

so 12b2 = a2 . 
Notice that 3 divides 12b2 and hence 3 divides a2 . It follows that 3 has to divide a (one way 

to see this: every integer can be written as either 3n, 3n +1, or 3n + 2 for some integer n. If you 
square these three choices, only the first one gives you a multiple of three.) 

Let a = 3k, for k ∈ Z. Then substitution yields 12b2 = (3k)2 = 9k2, so dividing by 3 we have 
4b2 = 3k2, so 3 divides 4b2 and hence 3 divides b2 . Just as for a, this implies that b has to divide 
b. But then a and b share the common factor of 3, which contradicts our choice of representation 
of r. So there is no rational number whose square is 12. 

1 1
2) S ⊆ R, S �= ∅, and u = sup S. Given any n ∈ N, ∀s ∈ S, s ≤ u < u + 

n 
, so u + 

n 
is an upper 

1 1
bound for S. Assume u − is also an upper bound for S. Since u − < u, u would not be the 

n n
1

least upper bound for S, which is a contradiction. Therefore u − is not an upper bound for S. 
n 

3) Recall that a subset of the real numbers, A ⊆ R, is bounded if there are real numbers a and a� 

such that 
t ∈ A = ⇒ a� ≤ t ≤ a. 

Since A,B ⊆ R are bounded, they have upper bounds a and b respectively, and lower bounds a�
and b�. Let α = max (a, b) and β = min (a�, b�). Clearly, 

t ∈ A = ⇒ β ≤ a� ≤ t ≤ a ≤ α 

t ∈ B = ⇒ β ≤ b� ≤ t ≤ b ≤ α, 

hence any t ∈ A ∪ B satisfies β ≤ t ≤ α and A ∪ B is bounded. 
Notice that, in particular, this shows that max{sup A, sup B} is an upper bound for A ∪ B, so 

we only have to show that it is the least upper bound. Suppose γ < max{sup A, sup B}. Then 
without loss of generality, γ < sup A. By definition of supremum, γ is not an upper bound of A, 
so ∃a ∈ A with γ < a. But a ∈ A ⇒ a ∈ A ∪ B, so γ is not an upper bound of A ∪ B. Therefore 
max{sup A, sup B} = sup A ∪ B. 

4) Start by noting that, if n, m ∈ N then bnbm = bn+m from which it follows that bnbm = bn+m for 
n, m ∈ Z (why?). Similarly, you can show that bnm = (bn)m for n, m ∈ Z. Recall that, if x > 0, 

1 1 n 
then xn is defined to be the unique positive real number such that xn = x. 

1 nq
a) We have that m/n = p/q so mq = pn. Notice that (bm)n = (bm)q = bmq and that 

1 nq 
q(bp) = (bp)n = bpn, which is also equal to bmq. But we know that there is a unique real 

1 
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number y satisfying ynq = bmq hence the two numbers we started with have to be equal, i.e., 
1 1 

(bm)n = (bp) q . 

Notice that if this equality didn’t hold, then we could not make sense of the symbol br for 
r ∈ Q, because the value would change if we wrote the same number r in two different ways. 

b) Let r, s ∈ Q with r = 
m 

and s = 
p 
. Since nq is an integer we know that 

n q 

(brbs)nq = (br)nq (bs)nq 

1 nq
but (br)nq = (bm)n = (bm)q = bmq and similarly (bs)nq = bnp. Since mq and np are 

integers we can conclude
 
(brbs)nq = bmqbnp = bmq+np
 . 

But there is a unique positive real number, y, such that ynq = bmq+np, so we know that � � 1 mq+np m p
 
nq qbrbs = bmq+np nq = b = b n + = br+s .
 

c) Now with b > 1, given r, s ∈ Q, s ≤ r we want to show bs ≤ br . Let r − s = m , 0 < n, 0 ≤ m n 
1

since s ≤ r. Then br−s = (bm)n , and it is easy to see that 1 ≤ bm, since 0 ≤ m and 1 < b. 
Thus a positive power of br−s is greater than or equal to 1, which implies 1 ≤ br−s. Multiplying 
by bs gives bs ≤ br−sbs = b(r−s)+s = br, so bs ≤ br . Hence for any bs ∈ B(r), s ≤ r ⇒ bs ≤ br , 
so br is an upper bound for B(r). Since br ∈ B(r), br must be the least upper bound, so 
br = sup B(r). 

d) So let x, y ∈ R. If r, s ∈ Q are such that r ≤ x, s ≤ y, then r + s ≤ x + y so br+s ∈ B(x + y) 
and brbs ≤ bx+y. Keeping s fixed, notice that for any r ≤ x we have 

bx+y 

br ,≤ 
bs 

thus bx+y 
is an upper bound for B (x) which implies bx ≤ bx+y 

. We rearrange this to bs bs 

bx+y 

bs ≤ 
bx 

and conclude that by ≤ bx+y 
or bxby ≤ bx+y. 

1 
bx 

Suppose the inequality is strict. Then ∃t ∈ Q, t < x + y, such that bxby < bt . We will find 
r, s ∈ Q, with r ≤ x, s ≤ y and t < r + s < x + y. First, find N ∈ N so that N (x + y − t) > 1, 
then find r ∈ Q so that x − 1 < r < x and s ∈ Q such that y − 1 < s < y (the existence 2N 2N 
of N , r, s follow from the Archimedean property of R as shown in class). Now, notice that 

1 
N (x + y − t) > 1 = ⇒ t < x + y − 

N
, 

1 1 1 
x − 

2N 
< r < x and y − 

2N 
< s < y = ⇒ x + y − 

N 
< r + s < x + y 

hence we have t < r + s < x + y just like we wanted. 

˘ ¯ 1This is true even if x + y ∈ Q, notice that sup B (x + y) = sup bt : t ∈ Q, t < x + y 
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But now we have

bxby < bt < br+s = brbs


which is a contradiction because, since r < x and s < y, we have br < bx and bs < by! 2 

5) We know that in any ordered field, squares are greater than or equal to zero. Since i2 = −1, this 
means that 0 ≤ −1. But then 1 = 0 + 1 ≤ −1 + 1 = 0 ≤ 1 which implies 0 = 1, a contradiction! 

6) I’ll write � for this relation on C to distinguish it from the normal order on R. To show that �
is an order on C, we must show both transitivity and totality (or given x, y ∈ C, exactly one of 
the following is true: x � y, y � x, or x = y). First for transitivity, let x, y, z ∈ C, x = a + bi, 
y = c + di, z = e + fi such that x � y � z. Therefore a ≤ c ≤ e, so a ≤ e by the transitivity of 
the order on R. If a < e, then x � z, so we are done. If a = e, then a = c = e so we have from 
the definition of � that b < d < f , so once again by the transitivity of the order on R, b < f . 
Now a = e and b < f ⇒ x � z, so we have shown transitivity. 

Now to show totality. Consider x, y ∈ C, x = a + bi, y = c + di. Without loss of generality, 
let a ≤ c. Suppose a = c. Then b < d ⇔ x � y, b > d ⇔ y � x, and b = d ⇔ x = y, so by the 
totality of the order on R, we have the totality of � on C in the case of a = c. Suppose instead 
that a < c. Then we know x � y, and it is not the case that y � x or x = y, so we have totality 
in this case as well. Thus we have proven that � is an order on C. 

This order does not have the least-upper-bound property. Consider the set of complex numbers 
with real part less than or equal to zero: 

S = {a + bi : a ≤ 0, b ∈ R}. 
S is bounded above, for instance by the number 1, but it is not possible for any number z = a+bi 
to be the supremum of S. If a ≤ 0, then a + bi � a + (b + 1)i ∈ S, so a + bi is not an upper 
bound for S. If a > 0, then a + (b − 1)i � a + bi, and a + (b − 1)i is also an upper bound for S, 
so a + bi is not the least upper bound. Therefore S has no least upper bound, even though it is 
bounded above. 

7) x, y ∈ Rk, so let x = (a1, a2, ..., ak), y = (b1, b2, ..., bk). Then 
k k k � 

|x + y|2 + |x − y|2 = 
i=1 

(ai + bi)2 + 
j=1 

(aj − bj )2 = 
i=1 

(ai + bi)2 + (ai − bi)2 

k k 

= (a 2 
i + 2aibi + b2 

i + a2 
i − 2aibi + bi 

2) = (2a 2 + 2b2
i
) = 2(|x|)2 + 2(|y|)2 .i 

i=1 i=1
 

The geometric interpretation comes from looking at the parallelogram whose vertices are the 
points 0, x, x + y and y. Then the equation states that the sum of the squares of the lengths 
of the two diagonals (the vectors x + y and x − y) is the same as the sum of the squares of the 
lengths of the four sides. 

by2A different proof of bx+y ≤ bx could start by justifying bz = inf{br : r ∈ Q, r ≥ z} and then proceeding as in the 
proof of bxby ≤ bx+y . 
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