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Dimensions
1 
Dimensions, often called units, are familiar creatures in physics and engi­
neering. They are also helpful in mathematics, as I hope to show you with 
examples from differentiation, integration, and differential equations. 

1.1 Free fall 
Dimensions are often neglected in mathematics. Calculus textbooks state 
many problems in this form: 

A ball falls from a height of h feet. Neglecting air resistance, estimate 
its speed when it hits the ground, given a gravitational acceleration of 
g feet per second squared. 

The units, highlighted with boldface type, have been separated from g or h, 
making g and h pure numbers. That artificial purity ties one hand behind 
your back, and to find the speed you are almost forced to solve this differential 
equation: 

d2y = −g, with y(0) = h and ẏ(0) = 0,
dt2 

where y(t) is the ball’s height at time t, ẏ(t) is its velocity, and g is the 
strength of gravity (an acceleration). This second-order differential equation 
has the following solution, as you can check by differentiation: 

ẏ(t) = −gt, 

y(t) = − 
2
1 
gt2 + h. 

The ball hits the ground when y(t) = 0, which happens when t0 = 2h/g. 
The speed after that time is ẏ(t) = −gt0 = −

√
2gh. This derivation has many 
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Dimensions 4 

spots to make algebra mistakes: for example, not taking the square root when 
solving for t0, or dividing rather than multiplying by g when finding the speed. 

Here’s the same problem written so that dimensions help you: 
A ball falls from a height h. Neglecting air resistance, estimate its 
speed when it hits the ground, given a gravitational acceleration of g. 

In this statement of the problem, the dimensions of h and g belong to the 
quantities themselves. The reunion helps you guess the final speed, without 
solving differential equations. The dimensions of h are now length or L for 
short. The dimensions of g are length per time squared or LT−2; and the 
dimensions of speed are LT−1. The only combination of g and h with the 
dimensions of speed is 

gh × dimensionless constant. 

An estimate for the speed is therefore 

v ∼ gh, 

where the ∼ means ‘equal except perhaps for a dimensionless constant’. Be­
sides the minus sign (which you can guess) and the dimensionless factor 

√
2, 

the dimensions method gives the same answer as does solving the differential 
equation – and more quickly, with fewer places to make algebra mistakes. 
The moral is: 

Do not rob a quantity of its intrinsic dimensions. 

Its dimensions can guide you to correct answers or can help you check pro­
posed answers. 

1.2 Integration 

If ignoring known dimensions, as in the first statement of the free-fall problem, 
hinders you in solving problems, the opposite policy – specifying unknown 
dimensions – can aid you in solving problems. You may know this Gaussian 
integral: 

∞ 

e−x 2 
dx = 

√
π. 

−∞ 

What is the value of 

4 4 
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1.2 Integration 5 

∞ 

e−αx
2 
dx, 

−∞ 

where α is a constant? The integration variable is x so after you evaluate 
the integral over the limits, the x disappears; but α remains. The result 
contains only α and maybe dimensionless numbers, so α is the only quantity 
in the result that could have dimensions. For dimensional analysis to have a 
prayer of helping, α needs dimensions. Otherwise you cannot say whether, for 
example, the result should contain α or contain α2; both choices have identical 
dimensions. Guessing the answer happens in three steps: (1) specifying the 
dimensions of α, (2) finding the dimensions of the result, and (3) using α to 
make a quantity with the dimensions of the result. 

In the first step, finding the dimensions of α, it is more intuitive to specify 
the dimensions of the integration variable x, and let that specification decide 
the dimensions of α. Pretend that x is a length, as its name suggests. Its 
dimensions and the exponent −αx2 together determine the dimensions of α. 
An exponent, such as the 7 in 27, says how many times to multiply a quantity 
by itself. The notion ‘how many times’ is a pure number; the number might 
be negative or fractional or both, but it is a pure number: 

An exponent must be dimensionless. 

Therefore αx2 is dimensionless, and the dimensions of α are L−2. A conve­
nient shorthand for those words is 

[α] = L−2 , 

where [quantity] stands for the dimensions of the quantity. 
The second step is to find the dimensions of the result. The left and right 

sides of an equality have the same dimensions, so the dimensions of the result 
are the dimensions of the integral itself: 

∞ 
2 

e−αx dx. 
−∞ 

What are the dimensions of an integral? An integral sign is an elongated 
‘S’, standing for Summe, the German word for sum. The main principle of 
dimensions is: 

5 5 
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Dimensions 6 

You cannot add apples to oranges. 

Two consequences are that every term in a sum has identical dimensions 
and that the dimensions of a sum are the dimensions of any term. Similarly, 
given the kinship of summation and integration, the dimensions of the integral 
are the dimensions of e−αx2 

dx. The exponential, despite the fierce-looking 
exponent of −αx2, is just the pure number e multiplied by itself several times. 
Since e has no dimensions, eanything has no dimensions. So the exponential 
factor contributes no dimensions to the integral. However, the dx might 
contribute dimensions. How do you know the dimensions of dx? If you read 
d as ‘a little bit of’, then dx becomes ‘a little bit of x’. A little bit of length 
is still a length. More generally: 

dx has the same dimensions as x. 

The product of the exponential and dx therefore has dimensions of length, 
as does the integral – because summation and its cousin, integration, cannot 
change dimensions. 

The third step is to use α to construct a quantity with the dimensions of 
the result, which is a length. The only way to make a length is α−1/2, plus 
perhaps the usual dimensionless constant. So 

∞ 

e−αx
2 
dx ∼ √1 

α
. 

−∞ 

The twiddle ∼ means ‘equal except perhaps for a dimensionless constant’. 
The missing constant is determined by setting α = 1 and reproducing the 
original integral: 

∞ 

e−x 2 
dx = 

√
π. 

−∞ 

Setting α = 1 is a cheap trick. Several paragraphs preceding exhorted you 
not to ignore the dimensions of quantities; other paragraphs were devoted to 
deducing that α had dimensions of L−2; and now we pretend that α, like 1, 
is dimensionless?! But the cheap trick is useful. It tells you that the missing 
dimensionless constant is 

√
π, so 

∞ 

e−αx
2 π 
dx = . 

α−∞ 

6 6 
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1.3 Taylor and MacLaurin series 7 

The moral of the preceding example is: 

Assign dimensions to quantities with unspecified dimensions. 

In this example, by assigning dimensions to x and α, we got enough informa­
tion to guess the integral. 

1.3 Taylor and MacLaurin series 

The preceding example applied dimensions to integrals. Dimensions also help 
you remember Taylor series, a result based on derivatives. The idea of Taylor 
series is that if you know a function and all its derivatives at one point, you can 
approximate the function at other points. As an example, take f(x) = 

√
x. 

You can use Taylor series to approximate 
√

10 by knowing f(9) and all the 
derivatives f ′(9), f ′′(9), . . . . 

The MacLaurin series, a special case of Taylor series when you know f(0), 
f ′(0), . . . , looks like: 

f(x) = f(0) + stuff 

What is the missing stuff? The first principle of dimensions can help, that you 
cannot add apples to oranges, so all terms in a sum have identical dimensions. 
The first term is the zeroth derivative f(0). The first term hidden in the 
‘stuff’ involves the first derivative f ′(0), and this new term must have the 
same dimensions as f(0). To draw a conclusion from this sameness requires 
understanding how differentiation affects dimensions. 

In the more familiar notation using differentials, 

f ′(x) = df . 
dx 

So the derivative is a quotient of df and dx. You can never – well, with 
apologies to Gilbert & Sullivan, hardly ever – go astray if you read d as ‘a 
little bit of’. So df means ‘a little bit of f ’, dx means ‘a little bit of x’, and 

f ′(x) = df = a little bit of f
. 

dx a little bit of x 

Using the [quantity] notation to stand for the dimensions of the quantity, the 
dimensions of f ′(x) are: 
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Dimensions 8 

[a little bit of f ][f ′(x)] = 
[a little bit of x]

. 

Since a little bit of a quantity has the same dimensions as the quantity itself, 

[a little bit of f ] [f ][f ′(x)] = 
[a little bit of x]

=
[x]
. 

Differentiating with respect to x is, for the purposes of dimensional analy­
sis, equivalent to dividing by x. 

So f ′(x) has the same dimensions as f/x. 
This strange conclusion is worth testing with a familiar example. Take 

distance x as the function to differentiate, and time as the independent vari­
able. The derivative of x(t) is ẋ(t) = dx/dt. [Where did the prime go, as 
in x′(t)? When the independent variable is time, a dot instead of a prime is 
used to indicate differentiation.] Are the dimensions of ẋ(t) the same as the 
dimensions of x/t? The derivative ẋ(t) is velocity, which has dimensions of 
length per time or LT−1. The quotient x/t also has dimensions of length per 
time. So this example supports the highlighted conclusion. 

The conclusion constrains the missing terms in the MacLaurin series. The 
first missing term involves f ′(0), and the term must have the same dimensions 
as f(0). It doesn’t matter what dimensions you give to f(x); the principle of 
not adding apples to oranges applies whatever the dimensions of f(x). Since 
its dimensions do not matter, choose a convenient one, that f(x) is a volume. 
Do not, however, let x remain unclothed with dimensions. If you leave it 
bare, dimensions cannot help you guess the form of the MacLaurin series: If 
x is dimensionless, then differentiating with respect to x does not change the 
dimensions of the derivatives. Instead, pick convenient dimensions for x; it 
does not matter which dimensions, so long as x has some dimensions. Since 
the symbol x often represents a length, imagine that this x is also a length. 

The first derivative f ′(0) has dimensions of volume over length, which 
is length squared. To match f(0), the derivative needs one more power of 
length. The most natural object to provide the missing length is x itself. As 
a guess, the first-derivative term should be xf ′(0). It could also be xf ′(0)/2, 
or xf ′(0) multiplied by any dimensionless constant. Dimensional analysis 
cannot tell you that number, but it turns out to be 1. The series so far is: 

f(x) = f(0) + xf ′(0) + · · · . 

8 8 
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1.4 Cheap differentiation 9 

Each successive term in a MacLaurin (or Taylor) series contains a suc­
cessively higher derivative. The first term used f(0), the zeroth derivative. 
The second term used f ′(0), the first derivative. The third term should use 
the second derivative f ′′(0). The dimensions of the second derivative are vol­
ume over length squared. because each derivative divides f by one length. 
Compared to the volume, f ′′(0) lacks two lengths. The most natural quantity 
to replace those lengths is x2, so the term should be x2f ′′(0). It could be 
multiplied by a dimensionless constant, which this method cannot find. That 
number turns out to be 1/2, and the term is x2f ′′(0)/2. The series is now 

f(x) = f(0) + xf ′(0) + 
2
1 
x 2f ′′(0) + · · · . 

You can guess the pattern. The next term uses f (3)(0), the third deriv­
ative. It is multiplied by x3 to fix the dimensions and by a dimensionless 
constant that turns out to be 1/6: 

f(x) = f(0) + xf ′(0) + 
2
1 
x 2f ′′(0) + 

6
1 
x 3f (3)(0) + · · · 

The general term is 

xnf (n)(0) 
n! 

, 

for reasons that will become clearer in ?? on analogies and operators. This 
example illustrates how, if you remember a few details about MacLaurin 
series – for example, that each term has successively higher derivatives – then 
dimensional analysis can fill in the remainder. 

1.4 Cheap differentiation 

The relation [f ′(x)] = [f ] / [x] suggests a way to estimate the size of deriv­
atives. Here is the differential equation that describes the oscillations of a 
mass connected to a spring: 

d2x 
m 
dt2 

+ kx = 0, 

where m is the mass, x is its position, t is time, and k is the spring constant. 
In the first term, the second derivative d2x/dt2 is the acceleration a of the 
mass, so m(d2x/dt2) is ma or the force. And the second term, kx, is the force 
exerted by the spring. In working out what the terms mean, we have also 
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Dimensions 10 

checked that the terms have the same dimensions (here, dimensions of force). 
So the equation is at least dimensionally correct. 

Here’s how to estimate the size of each term. The dimensions of d2x/dt2 

comes from dividing the dimensions of x by the dimensions of t2. The size 
of d2x/dt2 is estimated by dividing the size of x by the size of t2. Why not 
instead divide the dimensions of x2 by those of t2? The numerator, after all, 
has a d2 in it. To answer that question, return to the maxim: d means ‘a 
little bit of’. So dx means ‘a little bit of x’, and d2x = d(dx) means ‘a little 
bit of a little bit of x’. The numerator, therefore does not have anything to 
do with x2. Instead, it has the same dimensions as x. Another way of saying 
the same idea is that differentiation is a linear operation. 

Even if x/t2 is a rough estimate for the second derivative, x and t are 
changing: How do you know what x and t to use in the quotient? For x, 
which is in the numerator, use a typical value of x. A typical value is the 
oscillation amplitude x0. For t, which is in the denominator, use the time in 
which the numerator changes significantly. That time – call it τ – is related 
to the oscillation period. So 

dx typical x x0 
,

dt 
∼ 

τ 
∼ 
τ 

and 

d2x d 
( 
dx 
) 

1 x0 x0 
dt2 

= 
dt dt 

∼ 
τ τ 

= 
τ 2 
. 

Now we can estimate both terms in the differential equation: 

d2x x0 
m 
dt2 
∼ m
τ 2 
. 

kx ∼ kx0, 

The differential equation says that the two terms add to zero, so their sizes 
are comparable: 

x0 
m
τ 2 
∼ kx0. 

Both sides contain one power of the amplitude x0, so it divides out. That 
cancellation always happens in a linear differential equation. With x0 gone, 
it cannot affect the upcoming estimate for τ . So 
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1.5 Free fall revisited 11 

In ideal spring motion – so-called simple harmonic motion – the oscilla­
tion period is independent of amplitude. 

After cancelling the x0, the leftover is k ∼ m/τ2 or τ ∼ m/k. A quantity 
related to the time τ is its reciprocal ω = τ −1, which has dimensions of inverse 
time or T−1. Those dimensions are the dimensions of frequency. So 

ω = τ−1 k
.∼ 
m 

When you solve the differential equation honestly, this ω is exactly the angular 
frequency (angle per time) of the oscillations. The missing constant, which 
dimensional analysis cannot compute, is 1. In this case, dimensional analysis, 
cheap though it may be, gives the exact frequency. 

1.5 Free fall revisited 

The ball that fell a height h was released from rest. What if it had an initial 
velocity v0. What is its impact velocity vfinal? 

1.6 What you have learned 

Preserve dimensions in quantities with dimensions: Do not write ‘g meters• 
per second squared’; write g. 

Choose dimensions for quantities with arbitrary dimensions, like for x and• 
α in 

∞ 
2 

e−αx dx. 
−∞ 

Exponents are dimensionless. • 

You cannot add apples to oranges: Every term in an equation or sum • 
has identical dimensions. Another consequence is that both sides of an 
equation have identical dimensions. 

The dimensions of an integral are the dimensions of everything inside it, • 
including the dx. This principle helps you guess integrals such as the 
general Gaussian integral with −αx2 in the exponent. 

1 11 
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Dimensions 12 

The dimensions of a derivative f ′(x) are the dimensions of f/x. This• 
principle helps reconstruct formulas based on derivatives, such as Taylor 
or MacLaurin series. 

The size of df/dx is roughly • 

typical size of f

x interval over which f changes significantly


See the short and sweet book by Cipra [1] for further practice with di­
mensions and with rough-and-ready mathematics reasoning. 
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Extreme cases
2 
The next item for your toolbox is the method of extreme cases. You can 
use it to check results and even to guess them, as the following examples 
illustrate. 

2.1 Fencepost errors 

Fencepost errors are the most common programming mistake. An index loops 
over one too many or too few items, or an array is allocated one too few 
memory locations – leading to a buffer overrun and insecure programs. Since 
programs are a form of mathematics, fencepost errors occur in mathematics 
as well. The technique of extreme cases helps you find and fix these errors 
and deduce correct results instead. 

Here is the sum of the first n odd integers: 

S = 1 + 3 + 5 + ︸ ︷︷ · · · ︸ 
n terms 

Odd numbers are of the form 2k + 1 or 2k − 1. Quickly answer this question: 

Is the last term 2n + 1 or 2n − 1? 

For a general n, the answer is not obvious. You can figure it out, but it is easy 
to make an algebra mistake and be off by one term, which is the difference 
between 2n − 1 and 2n + 1. An extreme case settles the question. Here is the 
recipe for this technique: 

13 13 
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Extreme cases	 14 

1.	 Pick an extreme value of n, one where the last 
term in the sum is easy to determine. 

2.	 For that n, determine the last term. 

3.	 See which prediction, 2n − 1 or 2n +1 (or perhaps 
neither), is consistent with this last term. 

The most extreme value of n is 0. Since n is the number of terms, however, 
the meaning of n = 0 is obscure. The next most extreme case is n = 1. With 
only one term, the final (and also first) term is 1, which is 2n − 1. So the 
final term, in general, should be 2n − 1. Thus the sum is 

S = 1 + 3 + 5 + + 2n − 1.· · · 

Using sigma notation, it is 

n−1

S = (2k + 1). 
k=0 

This quick example gives the recipe for extreme-cases reasoning; as a side 
benefit, it may help you spot bugs in your programs. The sum itself has 
an elegant picture, which you learn in Section 4.1 in the chapter on pic­
torial proofs. The rest of this chapter applies the extreme-cases recipe to 
successively more elaborate problems. 

2.2 Integrals 

An integral from the Chapter 1, on dimensions, can illustrate extreme cases 
as well as dimensions. Which of these results is correct:   

√
απ 

∞ 
2 √or ?e−αx dx = π−∞ 

α 

Dimensional analysis answered this question, but forget that knowledge for 
the moment so that you can practice a new technique. 

14 14 
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2.2 Integrals 

e−5x2

0 1-1

→ 0. 

15 

You can make the correct choice by by looking at the 
integrand e−αx

2 in the two extremes α →∞ and α 
As α becomes large, the exponent −αx2 becomes large 
and negative even when x is only slightly greater than 
zero. The exponential of a large negative number is nearly zero, so the bell 
curve narrows, and its area shrinks. As α → ∞, the area and therefore the 
integral should shrink to zero. The first option, 

√
απ, instead goes to infinity. 

It must be wrong. The second option, π/α, goes to infinity and could be 

e−0.2·x2

0 1-1

correct. 
The complementary test is α 0. The function →

flattens to the horizontal line y = 1; its integral over an 
infinite range is infinity. The first choice, 

√
πα, fails this 

test because instead it goes to zero as α 0. The second √ →
option, π/α, goes to infinity and passes the test. So 
the second option passes both tests, and the first option fails both tests. This 
increases my confidence in 

√ 
π/α while decreasing it, nearly to zero, in 

√
πα. 

If those were the only choices, and I knew that one choice was correct, I 
would choose π/α. However, if the joker who wrote the problem included 

2/α among the choices, then I need a third test to distinguish between 
2/α and π/α. For this test, use a third extreme case: α 1. Wait, how →

is 1 an extreme case? Infinity and zero are extreme, but 1 lies between those 
two so it cannot be an extreme. 

Speaking literally, 1 is a special case rather than an extreme case. So 
extend the meaning of extreme with poetic license and include special cases. 
The tool, named in full, would be the ‘method of extreme and special cases’. 
Or, since extreme cases are also special, it could be the ‘method of special 
cases’. The first option, although correct, is unwieldy. The second option, 
although also sharing the merit of correctness, is cryptic. It does not help 
you think of special cases, whereas ‘extreme cases’ does help you: It tells you 
to look at the extremes. So I prefer to keep the name simple – extreme cases 
– while reminding myself that extreme cases include special cases like α 1. 

In the α → 1 limit the integral becomes 
→ 

∞ 
2 

I ≡ e−x dx, 
−∞ 

where the ≡ notation means ‘is defined to be’ (rather than the perhaps more 
common usage in mathematics for modular arithmetic). It is the Gaussian 
integral and its value is 

√
π. The usual trick to compute it is to evaluate the 

square of the integral: 
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︸ ︷︷ ︸ 

∫ 

∫ 

∫ 
√

∫ √ 

16 16 

Extreme cases 16 (∫ ) (∫ ) 

I2 = 
∞ 

e−x 2 
dx × 

∞ 

e−x 2 
dx . 

−∞ −∞ 

In the second factor, change the integration variable to y, making the product 

I2 = 
∞ ∞ 

e−αx
2 
e−αy

2 
dx dy. 

−∞ −∞ 

It looks like the integral has become more complicated, but here comes the 
magic trick. The exponentials multiply to give e−(x 2+y 2), integrated over all 
x and y – in other words, over the whole plane. And e−(x 2+y 2) = e−r 2 . So 
the square of the Gaussian integral is also, in polar coordinates, the integral∫ 2 

plane e
−r dA, where dA is the element of area r dr dθ: 

I2 = 
∫ 2π ∫ ∞ 

e−r 
2 
r dr dθ . 

0 0 
dA 

This integral is doable because the r contributed by the dA is the derivative, 
except for a factor of 2, of the r2 in the exponent: 

2 21 
e−r r dr =

2
e−r + C, 

and 

∞ 
2 1 

e−r r dr =
2
. 

0 

The dθ integral contributes a factor of 2π so I2 = 2π/2 = π and the Gaussian 
integral is its square root: 

I = 
∞ 

e−x 2 
dx = 

√
π. 

−∞ 

The only choice consistent with all three extreme cases, even with 2/α 
among them, is 

∞ 

e−αx
2 π 
dx = . 

α−∞ 

This integral could also be guessed by dimensions, as explained in Section 1.2. 
Indeed dimensions tell you more than extreme cases do. Dimensions refutes√
π/α or 

√
π/α2, whereas both choices pass the three extreme-case tests: 
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α 0 Both choices correctly limit to ∞.• →


α →∞ Both choices correctly limit to 0.
• 

α 1 Both choices correctly limit to 
√
π.• → 

Extreme cases, however, has the virtue of being quick. You do not need 
to find the dimensions for x or α (or invent the dimensions), then find the 
dimensions of dx and of the result. Extreme cases immediately refutes 

√
πα. 

The technique’s other virtues become apparent in the next problem: how a 
pendulum’s period varies with amplitude. 

2.3 Pendulum 

In physics courses, the first problem on oscillations is the ideal spring. Its 
differential equation is 

d2x 
m 
dt2 

+ kx = 0, 

where k is the spring constant. Dividing by m gives 

d2x k 
dt2 

+ 
m
x = 0. 

A consequence of this equation, which we derived in Section 1.4, is 
that the oscillation period is independent of the amplitude. That property is 
characteristic of a so-called simple-harmonic system. The oscillation period 
is: 

T = 2π m. 
k 

Before moving on to the pendulum, pause to make a sanity check. To make 
a sanity check, ask yourself: ‘Is each portion of the formula reasonable, or 
does it come out of left field.’ [For the non-Americans, left field is one of 
the distant reaches of a baseball field, and to come out of left fields means 
an idea come out of nowhere and surprises everyone with how crazy it is.] 
One species of sanity checking is to check dimensions. Are the dimensions on 
both sides correct? In this case they are. The dimensions of spring constant 
are force per length because F = kx, so [k] = MT−2. So the dimensions of 
m/k are simply time, which is consistent with being an oscillation period 

2008-03-06 13:24:47 / rev ebd336097912+

Cite as: Sanjoy Mahajan, course materials for 18.098 / 6.099 Street-Fighting Mathematics, IAP 2008. 
            MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. 
                                            Downloaded on [DD Month YYYY].

17 17 



18 18 

Extreme cases 18 

T . [Sorry about the almost-ambiguous notation with T (italic) representing 
period and T (roman) representing the time dimension.] 

Another species of sanity checking is checking extreme cases. Is it reason­
able, for example, that m is in the numerator? To decide, check an extreme 
case of mass. As the mass goes to infinity, the period should go to infinity 
because the spring has a hard time moving the monstrous mass; and behold, 
the formula correctly predicts that T → ∞. Is it reasonable that spring 
constant k is in the denominator? Check an extreme case of k. As k 0,→
the spring becomes pathetically weak, and the period should go to infinity. 
Indeed, the formula predicts that T →∞. What about the 2π? To find this 
constant, either solve the differential equation honestly or use a trick invented 

m

l

θ

F = mg sin θ

by Huygens, which I will explain in lecture if you remind me. 
Once the spring has been beaten half to death in physics class, 

the pendulum is sprung on you. We will study how the period of 
a pendulum depends on its amplitude – on the maximum angle of 
the swing, normally called θ0. First, let’s derive the differential 
equation for the pendulum, then deduce properties of its solution 
without solving it. Just as force fights to linearly accelerate an 
object with mass, torque fights to angularly accelerate an object 
with moment of inertia. Compare the following formulas: 

force = mass × linear acceleration,

torque = moment of inertia × angular acceleration.


The first formula is Newton’s second law, so you can easily remember it. The 
second formula follows from the first by analogy, which is the technique of 
Chapter 6. Torque is like force; moment of inertia is like mass; and angular 
acceleration is like linear acceleration. 

The moment of inertia of the bob is I = ml2, and angular acceleration is 
α ≡ d2θ/dt2 (again using ≡ to mean ‘is defined to be’). The tangential force 
trying to restore the pendulum bob to the vertical position is F = mg sin θ. 
Or is it mg cos θ? Decide using extreme cases. As θ 0, the pendulum →
becomes directly vertical hanging downward, and the tangential force F goes 
to zero. Since sin θ 0 as θ 0, the force should contain sin θ rather than → → 
cos θ. 

The torque, which is the force times the lever arm l, is Fl = mgl sin θ. 
Putting all three pieces together: 
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−mgl sin θ = ml2 d
2θ
,︸ ︷︷ ︸ ︸︷︷︸ × 

dt2 
torque I 

α 

where the minus sign in the torque reflects that it is a restoring torque. The 
mass divides out to produce the pendulum differential equation: 

d

dt

2

2 
θ + g
l 

sin θ = 0. 

This pendulum equation looks similar to the spring equation 

d2x k 
dt2 

+ 
m
x = 0. 

Comparing the two equations produces these analogies: 

x θ, → 
k g 
m 
→ 
l
, 

x sin θ. → 

The first two lines are fine, but the third line contradicts the first one: x 
cannot map to θ and to sin θ. 

Extreme cases help. Sure, θ and sin θ are not identical. However, in the 
extreme case θ 0, which means that the oscillation angle θ also goes to →
zero, the two alternatives θ and sin θ are identical (a picture proof is given in 
??), For small amplitudes, in other words, the pendulum is almost a simple-
harmonic system, which would have a constant period. By analogy with the 
spring equation, the pendulum’s period is 

T = 2π l , 
g 

because the pendulum differential equation has g/l where the spring differen­
tial equation has k/m. This extreme case is further analyzed in Chapter 3 
using the technique of discretization. 

In the Gaussian integral with α, one extreme case was α 0 and another → 
was α → ∞. So try that extreme case here, and see what you can deduce. 
Not much, since an infinite angle is not informative. However, the idea of a 
large amplitude is suggestive and helpful. The largest meaningful amplitude – 
set by the angle of release – is 180◦ or, in radians, θ0 = π. That angle requires 
a rod as the pendulum ‘string’, so that the pendulum does not collapse. Such 
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a pendulum balanced at θ0 = π hangs upside down forever. So T →∞ when 
θ0 → π. Therefore the period should increase as amplitude increases. It 
could decrease initially, for small θ0, then increase as θ0 gets near π. That 
behavior would be nasty. The physical world, at least as a first assumption, 
does not play such tricks on us. 

2.4 Ellipse 

Now try extreme cases and dimensions on these candidate for­
mulas for the area A of an ellipse: 

a. 2	 ab 

b. 2	 a  + 2  b

a 

b 

c. 3	 a /b 

d. 2ab 

e.	 πab 

Let’s take them one by one. 

2•  
	 ab . This product has dimensions of length cubed rather than length 

squared, so it flunks the dimensions test and does not even graduate to 
the extreme-cases tests. But the other choices have correct dimensions 
and require more work. 

2•	 a  + 2  b . Try an extreme ellipse: a super-thin one with a = 0. This case 
satisfies the first step of the recipe: 

Pick an extreme value where the result is easy to determine without 
solving the full problem. 

Now do the second step: 

For that extreme case, determine the result. 

When a = 0 the ellipse has zero area no matter what b is. The third step 
is: 
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Determine the prediction in this extreme case, and compare it with the 
actual value from the second step. 

When a = 0, the candidate A = 2 a + 2 b becomes A = 2b . It can be zero, 
but alas only when b = 0. So the candidate fails this extreme-case test 
except when a = 0 and b = 0: a boring case of the ellipse shrinking to a 
point. 

3• a /b . This candidate passes the thin-ellipse test with a → 0. When 
a → 0, the predicted and actual areas are zero no matter the value of b.
Perhaps the candidate is correct. However, it must pass all tests – and even 
then it may be wrong. If a → 0 is a reasonable test, then by symmetry 
b → 0 should also be worth trying. This test pushes the candidate off the 
stage. When b → 0, which produces an infinitely thin vertical ellipse with 
zero area, the candidate predicts an infinite area whereas the actual area 
is zero. Although the candidate passed the first test, it fails the second 
test. 

2• ab . This candidate is promising. When a → 0 or b → 0, the actual and 
predicted areas are zero. So the candidate passes both extreme-case tests. 
Both a → 0 and b → 0 are literal extreme cases. Speaking figuratively, 
a = b is also an extreme case. When a = b, the candidate predicts that 
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A = 2a2 or, since a = b, that A = 2b2. When a = b, however, the ellipse 
is a circle with radius a, and that circle has area πa2 rather than 2a2. So 
the prediction fails. 

πab . This candidate passes all three tests. Just like A = 2ab, it passes • 
a 0 and b 0. Unlike A = 2ab, this candidate also passes the a = b→ →
test (making a circle). With every test that a candidate passes, confidence 
in it increases. So you can be confident in this candidate. And indeed it 
is correct. 

This example introduces extreme cases in a familiar problem, and one 
where you have choices to evaluate. We next try a three-dimensional problem 
and guess the answer from scratch. But before moving on, I review the 
extreme-case tests and discuss how to choose them. Two natural extremes 
are a 0 and b 0. However, where did the third test a b originate, and → → →
how would one think of it? The answer is symmetry, a useful trick. Actually 
it’s a method: ‘a method is a trick I use twice’ (George Polya). Symmetry 

2 21 
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already helped us think of trying b 0 after we tried a 0. So the following → →
use of it is the second application. Since a and b are lengths, it is natural to 

∞0−∞

compare them by forming their (dimensionless) ratio a/b. The range of a/b 
is between 0 and ∞: 

The immediately interesting values in this range are its endpoints 0 and ∞. 
However, this range is a runt. It is asymmetric, incomplete, and lives on only 
the right one-half of the real line. To complete the range so that it extends 

∞0−∞

from −∞ to ∞, take the logarithm of a/b. Here are the possible values of 
ln(a/b): 

The interesting values on this line are again the endpoints, which are −∞
and ∞, but also a new one: the middle point, 0. The interesting values of 
a/b are 0, 1, and ∞. These points are the three extreme cases for testing the 
candidate ellipse areas: 

a/b = 0 b = 0,→ 

a/b = ∞ → a = 0, 
a/b = 1 a = b.→ 

2.5 Truncated pyramid 

In the ellipse example, extreme cases helped us evaluate


h

b

a

Guess its volume 

candidates for the area. The next example shows you how

to use extreme cases to find a result. Beyond area, the next

level of complexity is volume, and the result we look for is

the volume of the truncated pyramid formed by slicing off

a chunk of the familiar pyramid with a square base. It has

therefore a square base and square top that, for simplicity,

we assume is parallel to the base. Its height is h, the side

length of the base is b, and the side length of the top is a.

by finding a formula that meets all the extreme-case tests!


In doing so do not forget the previous technique: dimensions. Any for­
mula must have dimensions of length cubed, so forget about candidate vol­
umes like V = a2b2 or V = a2bh. But a2b2/h would pass the dimensions 
test. 

22 
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What are the extreme cases? The simplest is h 0, producing a pyramid →
with zero volume. So a2b2/h, although having the correct dimensions, fails 
because it bogusly produces an infinite volume. Plausible candidates – those 
producing zero volume – could be ha2 or h2a. To choose between those 
two, think about how the volume must depend on the height. Chop the 
pyramid into little vertical slivers. When you double the height, you double 
the height of each sliver, which doubles the volume. So the volume should be 
proportional to height: 

V ∝ h. 

A few extreme-cases tests refine this guess. The remaining variables are a 
and b. The ellipse had only a and b. In the ellipse, a and b are equivalent 
lengths. Interchanging a and b rotates the ellipse 90◦ but preserves the same 
shape and area. For the truncated pyramid, interchanging a and b flips the 
pyramid 180◦ but preserves the shape and area. So a and b in the truncated 
pyramid might have the same interesting extreme cases as do a and b in the 
ellipse: a 0, b 0, and a b. So let’s apply each test in turn, ensuring → → →
that the formulas developed in the stepwise process meet all the tests so far 
investigated. 

a 0 . This limit shrinks the top surface from a square to a point, making • →
the truncated pyramid an ordinary pyramid with volume hb2/3. This 
formula also passes the V ∝ h test. So V = hb2/3 is a reasonable guess 
for the truncated volume. Continue testing it. 

b 0 . This limit shrinks the bottom surface from a square to a point, • →
producing an upside-down-but-otherwise-ordinary pyramid. The previous 
candidate V = hb2/3 predicts a zero volume, no matter what a is, so 
V = hb2/3 cannot be correct. The complementary alternative V = ha2/3 
passes the b 0 test. Great! →

Alas, it fails the first test a 0. One formula, V = hb2/3, works for → 
a 0; the other formula, V = ha2/3, works for b 0. Can a candidate → →
pass both tests? Yes! Add the two half-successful candidates: 

V = 1
3
ha2 + 1

3
hb2 = 1

3
h(a 2 + b2). 

Two alternatives that also pass both extreme-cases tests, but are not as 
easy to dream up, are 
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V = 
3
1 
h(a + b)2 . 

and 

V = 
3
1 
h(a − b)2 . 

a b . In this limit, the pyramid becomes a rectangular prism with height • → 

h and base area b2 (or a2). So its volume is V = hb2. The hard-won 
candidate V = h(a2 + b2)/3, designed to pass the two previous extreme 
cases, fails this one. Nor do the two alternatives pass. One candidate that 
does pass is V = hb2. However, it is asymmetric: It treats b specially, 
which is particularly absurd when a = b. What about V = ha2? It treats 
a specially. What about V = h(a2 + b2)/2? It is symmetric and passes 
the a = b test, but it fails the a 0 and b 0 tests.→ →

We need to expand our horizons. One way to do that is to compare 
the three candidates that passed a 0 and b 0:→ → 

V = 1
3
h(a 2 + b2) = 1

3
h(a 2 + b2), 

V = 
3
1 
h(a + b2) = 

3
1 
h(a 2 + 2ab + b2), 

V = 1
3
h(a − b2) = 1

3
h(a 2 − 2ab + b2). 

The expanded versions share the a2 and b2 terms in the parentheses, 
while differing in the coefficient of the ab term. The freedom to choose 
that coefficient makes sense. The product ab is 0 in either limit a 0 or→ 
b 0. So adding any amount of ab in the parentheses will not affect the 
a 
→ 

0 and b 0 tests. With just the right coefficient of ab, the candidate → →
might also pass the a = b test. Therefore, find the right coefficient n be 
in 

V = 
3
1 
h(a 2 + nab + b2). 

Use the extreme (or special) case a = b. Then, the candidate becomes 
V = h(2 + n)b2/3. To make this volume turn into the correct limit hb2, 
the numerical factor (2 + n)/3 should equal 1 meaning that n = 1 is the 
solution: 

V = 
3
1 
h(a 2 + ab + b2). 
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2.6 The magic one-third 

You may wonder about the factor of one-third in the volumes 

b

h = b

of a truncated or regular pyramid. An extreme-case trick ex­
plains its origin. First I explain the trick in fewer dimensions: 
another example of analogy, a technique worthy of its own chap­
ter (Chapter 6). Instead of immediately explaining the one-
third in the volume of a pyramid, which is a difficult three-
dimensional problem, first find the corresponding constant in a 
two-dimensional problem: the area A of a triangle with base b and height h. 
Its area is A ∼ bh. What is the constant? Choose a convenient triangle: per­
haps a 45-degree right triangle where h = b. Two such triangles form a square 
with area b2, so A = b2/2 when h = b. The constant in A ∼ bh is therefore 
1/2 and A = bh/2. Now use the same construction in three dimensions. 

What pyramid, when combined with itself perhaps several 
times, makes a familiar shape? Only the aspect ratio h/b matters 
in the following discussion. So choose b conveniently, and then 
choose h to make a pyramid with the clever aspect ratio. The 
goal shape is suggested by the square pyramid base. Another 
solid with the same base is a cube. Perhaps several pyramids can 
combine into a cube of side b. To ease the upcoming arithmetic, 
I choose b = 2. What should h be? To decide, imagine how 
the cube will be constructed. Each cube has six faces, so six 
pyramids might make a cube with each pyramid base forming one face of the 
cube and each pyramid tip facing inwards, meeting in the center of the cube. 
For the points to meet in the center of the cube, the height must be h = 1. 
So six pyramids with a = 0 (meaning that they are not truncated), b = 2, 
and h = 1 make a cube with side length 2. The volume of one pyramid is 

cube volume 8 4 
V = 

6 
=

6
=

3
. 

The volume of the pyramid is V ∼ hb2, and I choose the missing constant 
so that the volume is 4/3. Since hb2 = 4 for these pyramids, the missing 
constant is 1/3: 

V = 
3
1 
hb2 = 

3
4 
. 

So that the general, truncated pyramid agrees with the ordinary pyramid in 
the limit that a 0, the constant for the truncated pyramid is also one-third: → 
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1 
V = 3 h(a 

2 + ab + b2). 

2.7 Drag 

The final application of extreme-cases reasoning is to solutions of these nasty 
nonlinear, coupled, partial-differential equations: 

∂v + (v·∇)v = − 
ρ 
1 ∇p + ν∇2v, (3 eqns) 

∂t 

∇·v = 0. (1 eqn) 

The top three equations are the Navier–Stokes equations of fluid mechanics, 
and the bottom equation is the continuity equation. In the four equations is 
the answer to the following question: 

When you drop a paper cone (like a coffee filter) and a 
smaller cone with the same shape, which falls faster? 

Solving those equations is a miserable task, which is why we will instead 
use our two techniques: dimensions and then extreme cases. For the moment, 
assume that each cone instantly reaches terminal velocity; that approximation 
is reasonable but we will check it in ?? using the technique of discretization. 
So we need to find the terminal velocity. It depends on the weight of the cone 
and on the drag force F resisting the motion. 

To find the force, we use dimensions and add a twist to handle problems 
like this one that have an infinity of dimensionally correct answers. The 
drag force depends on the object’s speed v; on the fluid’s density ρ; on its 
kinematic viscosity ν; and on the object’s size r. Now find the dimensions 
of these quantities and find all dimensionally correct statements that are 
possible to make about F . Size r has dimensions of L. Terminal velocity v has 
dimensions of LT−1. Drag force F has dimensions of mass times acceleration, 
or MLT−2. Density ρ has dimensions of ML−3. The dimensions of viscosity 
ν are harder. In the problem set, you show that it has dimensions of L2T−1. 
If you look for combinations of ν, ρ, and r, and v that produce dimensions of 
force, an infinite number of solutions appear, whereas in previous examples 
using dimensions, only one possibility had the correct dimensions. 

Hence the need for a more advanced method to handle the infinite pos­
sibilities here. Return to the first principle of dimensions: you cannot add 
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apples to oranges. The requirement that the sides of an equation match di­
mensionally is one consequence of the apples-and-oranges principle. Another 
consequence is that every term in an equation must have the same dimensions. 
So imagine any true statement about drag force: 

A + B = C 

where A, B, and C might be messy combinations of the variables. Then 
divide each term by A: 

A B C+ = . 
A A A 

Because A, B, and C have the same dimensions, each ratio is dimensionless. 
So you can take any (true) statement about drag force and rewrite it in 
dimensionless form. No step in this argument depended on the details of 
drag. It required only that apples must be added to apples. So: 

You can write any true statement about the world in dimensionless form. 

Furthermore, you can construct any dimensionless expression using di­
mensionless groups: products of the variables where the product has no di­
mensions. Since you can write any true statement in dimensionless form, and 
can write any dimensionless form using dimensionless groups: 

You can write any true statement about the world using dimensionless 
groups. 

In the problem of free fall, with variables v, g, and h, the dimensionless 
group is v/

√
gh, perhaps raised to a power. With only one group, the only 

dimensionless statement has the form: 

the one group = dimensionless constant, 

which results in v ∼
√
gh. 

For the drag, what are some dimensionless groups? One group is F/ρv2r2, 
as you can check by working out its dimensions. A second group is rv/ν. Any 
other group, it turns out, can be formed from these two groups. With two 
groups, the most general dimensionless statement is 
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one group = f(other group), 

where f is a dimensionless function. It has a dimensionless argument and 
must return a dimensionless value because the left side of the equation is 
dimensionless. Using F/ρv2r2 as the first group: 

F rv 
ρv2r2 

= f
ν
. 

The second group, which is the quantity in the parentheses, is the Reynolds 
number and is often written Re. It measures how turbulent the fluid flow 
is. To find the drag force F , we have to find the function f . It is too hard to 
determine fully – it would require solving the Navier–Stokes equations – but 
it might be possible in extreme cases. The extreme cases here are Re 0 
and Re →∞. 

→ 

Let’s hope that the falling cones are in one of those limits! To decide, 
evaluate Re for the falling cone. From experience, even before you drop the 
cones to decide which falls faster, either cone falls at roughly v ∼ 1 m s−1. 
Its size is roughly r ∼ 0.1 m. And the viscosity of the fluid (air) in which it 
falls is ν ∼ 10−5 m2 s−1, which you can find by looking it up in a table by 
an online search, or by applying these approximation methods to physics and 
engineering problems (the theme of another course and book on approxima­
tion). So 

vr ︷ ︸︸ ︷ 
Re ∼ 

0.1 m × 1 m s−1 
∼ 104 .

10−5 m2 s−1 

ν 

So Re � 1, and we are safe in looking just at that extreme case. Even if the 
estimate for the speed and size are inaccurate by, say, a factor of 3 each, the 
Reynolds number is at least 1000, still much larger than 1. 

To decide what factors are important in the high-Reynolds-number limit, 
look at the form of the Reynolds number: rv/ν. One way to send it to infinity 
is the limit ν → 0. Viscosity, therefore, becomes irrelevant as Re → ∞, and 
in that limit the drag force F should not depend on viscosity. Although the 
conclusion is mostly correct, there are subtle lies in the argument. To clarify 
these subtleties required two hundred years of mathematical and physical 
development in both theory and experiment. So I will skip the truth, and hope 
that you are content at least for the moment with almost-truth, especially 
since it gives the same answer as the truth. 
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Let’s look at how the requirement of independence from ν constrains the 
general dimensionless form: 

F = f(Re)
ρv2r2 

The left side does not contain viscosity ν. The right side might because Re 
contains ν. So if any Reynolds number shows up on the right side, then 
viscosity will appear on the right side, with no viscosity on the left side with 
which to cancel it. And that situation would violate the extreme-case result 
that, in the Re →∞ limit, the drag force is independent of viscosity. So the 
right side must be independent of Re. Since f depended only on the Reynolds 
number, which has just been stricken off the list of allowed dependencies, the 
right side f(Re) is a dimensionless constant. Therefore, 

F = dimensionless constant,
ρv2r2 

or 

F ∼ ρv2 r 2 . 

And now we have the result that we need to find the relative terminal velocity 
of the large and small cones. The cones reach terminal speed when the drag 
force balances the weight. The weight is proportional to the area of the paper, 
so it is proportional to r2. The drag force is also proportional to r2, as we 
just found. To summarize: 

2 2 2ρv r r . ︸ ︷︷ ︸ ∝ ︸︷︷︸ 
weight F 

The factor of r2 on each side divides out, so 

12 v ∝ 
ρ
, 

showing that 

The cones’ terminal velocity is independent of its size. 

That result is indeed what we found in class by doing the experiment. So, 
without having to solve the Navier–Stokes differential equations, experiment 
and cheap theory agree! 
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Extreme cases 30 

2.8 What you have learned 

The main theme of this chapter is the recipe for extreme-cases reasoning for 
checking and guessing the answers to complicated problems: 

1.	 Pick an extreme value where the result is easy to determine without solv­
ing the full problem; for example, for the ellipse, its area is easy when 
a = 0 or b = 0. 

2.	 For that extreme case, determine the result. For the ellipse, the area is 
zero when either a = 0 or b = 0. 

3.	 Determine the prediction in this extreme case, and compare it with the 
actual value from the second step. So, for the ellipse, any candidate for 
the area had better go to zero when a = 0 or b = 0. 

Extreme cases also complements the technique of dimensions, once the 
problems become too complicated for the naive methods of the previous chap­
ter. That symbiosis was illustrated in computing the relative terminal veloc­
ities of the falling cones. The general recipe is based on the maxim that You 
can write any true statement about the world using dimensionless 
groups. It leads to the following problem-solving plan for finding, say, drag 
force F : 

1.	 Find the quantities on which F depends, and find the dimensions of F 
and of those quantities. 

2.	 Make dimensionless groups from those quantities. 

3.	 Write the result in general dimensionless form: 

group containing F = f(other groups). 

4.	 Use extreme-cases reasoning to guess the form of the dimensionless func­
tion f . 

30 30 
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3 Discretization


Discretization takes the fundamental idea of calculus


t

v

and pushes it to the opposite extreme from what cal­

culus uses. Calculus was invented to analyze chang­

ing processes such as orbits of planets or, as a one-

dimensional illustration, how far a ball drops in time

t. The usual computation 

distance = velocity × time 

fails because the velocity changes (it increases linearly with time). However 
– and this next step is the fundamental idea of calculus – over a short time 
interval, its velocity is almost constant and the usual distance formula works 
for each short interval. Each short distance is the area of one rectangle, and 
the total distance fallen is approximately the combined area of the rectangles. 
To eliminate the error, calculus uses the extreme case of infinite rectangles, 
ever thinner (shorter intervals) until each shrinks to zero width. Then the 
approximation of constant speed becomes exact. Discretization uses the op­
posite extreme: one maybe two fat rectangles. This limitation means the 
error may not be zero, but it drastically simplifies any computations. 

3.1 Exponential decay 

The first example is this integral: 
∞ 

e−t dt. 
0 

tSince the derivative of e is et, the indefinite integral 0

1

0 1

. . .

e−t

tis easy to find exactly, and the limits make the compu­
tation even simpler. In an example where the exact answer is known, we can 

31 31 
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32 32 

by a rectangle, and do the integral by finding the area 

fake e−t

0

1

0 1t

e−t

derivative df/dx. Its numerator df was estimate as a typical value of f(x). 
Its denominator dx became the x interval over which f(x) changes signifi­
cantly. For an exponential, a natural definition for significant change is to 
changes by a factor of e. When f(t) = e−t, this change happens when t goes 

So the approximating rectangle, whose height we’ve chosen 

Discretization 32 

adjust the free parameters in the method of discretization until the method 
produces accurate values. So, replace the complicated, continuous, smooth 
exponential decay e−t 

of the rectangle. 
With one rectangle, the approximate function re­


mains constant until it abruptly falls to and remains

zero. Finding the area of the rectangle requires choos­

ing its height and width. A natural height is the max­

imum of e−t, which is 1. A natural width is the time

interval until f(t) = e−t changes significantly. A sim­

ilar idea appeared in Section 1.4 to approximate a


from t to t + 1. 
to be 1, also has unit width. It is a unit square with unit area. And this 
rectangle exactly estimates the integral since 

∞ 

e−t dt = 1. 
0 

3.2 Circuit with exponential decay 

In Chapter 1 on dimensions, I insisted that declaring quantities prematurely

dimensionless ties one hand behind your back. In the previous example I

committed that sin by making the exponent be −t.

dimensionless, my choice made t dimensionless as well.


A more natural interpretation of t is as a time. So here is a similar 

Since an exponent is 

V

R

C

Iexample but where t has dimensions, which are useful in making and 
checking the approximations. Let’s first investigate the initial condi­
tions, just before the switch closes. No current is flowing since the 
circuit is not yet a closed loop. Furthermore, because the circuit has 
been waiting forever, the capacitor has had completely discharged. 
So capacitor has no charge on it. The charge determines the voltage 
across the capacitor by 

Q = CVC, 

3 32 



3 2008-03-06 13:24:47 / rev ebd336097912+

Cite as: Sanjoy Mahajan, course materials for 18.098 / 6.099 Street-Fighting Mathematics, IAP 2008. 
            MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. 
                                            Downloaded on [DD Month YYYY].

33 33 

3.2 Circuit with exponential decay 33 

where Q is the charge on the capacitor, C is its capacitance, and VC is the 
resulting voltage. [See the classics on circuits [2] and electromagnetism [3] for 
more on capacitors.] So just before the switch closes, the capacitor has zero 
voltage on it (VC = 0). 

At time t = 0, I close the switch, which connects the resistor and capacitor 
to the source voltage V (which is constant). Since VC starts at zero, the 
voltage drops in the resistor is the whole source voltage V : 

VR = V (initially), 

where VR is the voltage across the resistor. This voltage drop is caused 
by a current I flowing through the resistor (which then flows through the 
capacitor). Ohm’s law says that VR = IR. Initially VR = V so the initial 
current is I0 = V/R. This current charges the capacitor and increases VC. As 
VC increases, VR decreases – which decreases the current I, which decreases 
how fast VC increases, which . . . Finding the current is a problem for calculus, 

0

I0

0 τ

I(t→ 0)

I(t→∞)
t

0 ex-

in particular for a differential equation. 
Instead, let’s guess the current using dimensions, 

extreme cases, and the new technique of discretiza­
tion. First apply extreme cases. At the t = 
treme, the current is I0 = V/R. At the t = ∞ ex­
treme, no current flows: The capacitor accumulates 
enough charge so that VC = V , whereupon no voltage 
drops across the resistor. From Ohm’s law again, a 
zero voltage drop is possible only if no current flows. 

Between those extremes, we guess I using discretization. Pretend that I 
stays at its t = 0 value of I0 for a time τ , then drops to its t = ∞ value of 
I = 0. So τ is the time for the current to change significantly. To determine 
τ , use dimensions. It can depend only on R and C. [It could depend on 
V , but because the system is linear, the time constants do not depend on 
amplitude.] The only way to combine R and C into a time is the product 
RC. A reasonable guess for τ is therefore τ = RC. In this picture, the 
discretized current stays at V/R until t = τ , then falls to 0 and remains zero 
forever. 

3 33 
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34 34 

Discretization 

0

I0

0 τ

discretized I

t

I0e
−t/τ

The 

In
and the 

34 

No physical current changes so abruptly. To guess 
the true current, use discretization in reverse. 
exponential decay of Section 3.1 produced the same 
rectangular shape after discretizing. So perhaps the 
true current here is also an exponential decay. 
the other example, the function was e−t, 
changeover from early- to late-time behavior happened 
at t = 1 (in that example, t had no dimensions). By t = 1, the exponential 
decay e−t had changed significantly (by a factor of e). For this circuit, the 
corresponding changeover time is τ . To change by a factor of e in time τ , 
the current should contain e−t/τ . The initial current is I = I0, so the current 
should be 

I = I0e−t/τ = V e−t/τ . 
R 

Having a solution, even a guess, turns the hard work of solving differential 
equations into the easier work of verifying a solution. 

To test the guess for I, I derive the differential equation for the current. 
The source voltage V drops only in the resistor and capacitor, so their voltage 
drops must add to V : 

V = VR + VC. 

The capacitor voltage is VC = Q/C. The resistor voltage is VR = IR, so 

Q
V = IR + . 

C 

It seems that there are too many variables: V and C are constants, but I and 
Q are unknown. Fortunately current I and charge Q are connected: charge 
is the time integral of current and I = dQ/dt. Differentiating each term with 
respect to time simplifies the equation: 

dI 1 
( 
dQ 
) 

dI I0 = R + = R + . 
dt C dt dt C 

I 

Move the R to be near its companion C (divide by R): 

0 = dI + I = dI + I . 
dt RC dt τ 

τ 

Dimensions, extreme cases, and reverse discretization produced this current: 

34 34 
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3.3 Population 35 

I = I0e−t/τ . 

Amazing! It satisfies the differential equation: ( ) I0e−t/τd 
I0e
−t/τ + = 0 

dt τ 

because the time derivative brings down a factor of −1/τ , making the first 
and second terms equal except for a minus sign. 

3.3 Population 

Not all problems are exponen­

Area ∼ 2
70
× 3 · 108 ∼ 107

discretized distribution

2 700

4

census data

Age (years)

106/year

tial decays. In the next exam­
ple, the true functions are un­
known and exact answers are 
not available. The problem is 
to estimate the number of ba­
bies in the United States. To 
specify the problem, define ba­
bies as children less than two 
years old. One estimate comes 
from census data, which is ac­
curate within the limits of sta­
tistical sampling. You integrate the population curve over the range t = 0 
to 2 years. But that method relies on the massive statistical efforts of the 
US census bureau and would not work on a desert island. If only the pop­
ulation were constant (didn’t depend on age), then the integrals are easy! 
The desert-island, back-of-the-envelope method is to replace the complicated 
population curve by a single rectangle. 

How high is the rectangle and how wide is it? The width τ , which is 
a time, has a reasonable estimate as the average life expectancy. So τ ∼
70 years. How high is the rectangle? The height does not have such an 
obvious direct answer as the width. In the exponential-decay examples, the 
height was the the initial value, from which we found the area. Here, the 
procedure reverses. You know the area – the population of the United States 
– from which you find the height. So, with the area being 3 108, the height · 
is 

area 3 108 
height ∼ 

width 
∼ 

75 
· 
years 

, 

35 35 
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Discretization 36 

since the width is the life expectancy, for which we used 70 years. How did 
it become 75 years? The answer is by a useful fudge. The new number 75 
divides into 3 (or 300) more easily than 70 does. So change the life expectancy 
to ease the mental calculations. The inaccuracies caused by that fudge are 
no worse than in replacing the complex population curve by a rectangle. So 

height ∼ 4 106 year−1 .· 

Integrating a rectangle of that height over the infancy duration of 2 years 
gives 

Nbabies ∼ 4 106 years−1 × 2 years = 8 106 . ︸ · ︷︷ ︸ ︸ ︷︷ ︸ · 

height infancy 

Thus roughly 8 million babies live in the United States. From this figure, 
you can estimate the landfill volume used each year by disposable diapers 
(nappies). 

3.4 Full width at half maximum 

The Gaussian integral 
∞ 

2 
e−x dx 

−∞ 

has appeared in several examples, and you’ve seen the trick (in 

e−x2

0 1-1

The exponential Section 2.2) of squaring it to show that its value is 
√
π. 

in the integrand is a difficult, continuous function. Except over the infinite 
integration range, the integral has no closed form, which is why statistics 
tables enumerate the related error function numerically. I introduce that 
evidence to show you how difficult the integral is without infinite limits, and 

0 1-1

it is not easy even with infinite limits. 
Pretend therefore that you forget the trick. You can ap­

proximate the integral using discretization by replacing the in­
tegrand with a rectangle. How high and how wide should the 
rectangle be? The recipe is to take the height as the maximum 
height of the function and the width as the distance until the function falls 
significantly. In the exponential-decay examples, significant meant changing 
by a factor of e. The maximum of e−x 2 is at x = 0 when e−x 2 = 1, so the 
approximating rectangle has unit height. It falls to 1/e when x = ±1, so the 
approximating rectangle has width 2 and therefore area 2. This estimate is 
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3.4 Full width at half maximum 37 

half decent. The true value is 
√
π = 1.77 . . ., so the error is about 13%: a 

reasonable trade for one line of work. 
Another recipe, also worth knowing because it is sometimes more accu­

rate, arose in the bygone days of spectroscopy. Spectroscopes measure the 
wavelengths (or frequencies) where a molecule absorbed radiation and the 
corresponding absorption strengths. These data provided an early probe into 
the structure of atoms and molecules, and was essential to the development 
of quantum theory [4]. An analogous investigation occurs in today’s particle 
accelerators – colloquially, atom smashers – such as SLAC in California and 
CERN and in Geneva: particles, perhaps protons and neutrons, collide at high 
energies, showering fragments that carry information about the structure of 
the original particles. Or, to understand how a finely engineered wristwatch 
works, hammer it and see what the flying shards and springs reveal. 

The spectroscope was a milder tool. A chart recorder plotted the absorp­
tion as the spectroscope swept through the wavelength range. The area of 
the peaks was an important datum, and whole books like [5] are filled with 
these measurements. Over half a century before digital chart recorders and 
computerized numerical integration , how did one compute these areas? The 
recipe was the FWHM. 

FWHM = full width at half maximum 

Unpack the acronym in slow motion: 

1.	 M. Find the maximum value (the peak value). 

2.	 HM. Find one-half of the maximum value, which is the half maximum. 

3.	 FWHM. Find the two wavelengths – above and below the peak – where 
the function has fallen to one-half of the maximum value. The full width 
is the difference between the above and below wavelengths. 

The FWHM approximation recipe replaces the peak by a rectangle with 
height equal to the peak height and width equal to the the width estimated 

√
ln 2−

√
ln 2

FWHM

by the preceding three-step procedure. 
Try this recipe on the Gaussian integral and compare the 

estimate with the estimate from the old recipe of finding where 
the function changed by a factor of e. The Gaussian has max­
imum height 1 at x = 0. The half maximum is 1/2, which 

37 
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38 38 

Discretization 38 

happens when x = ±
√

ln 2. The full width is then 2
√

ln 2, and

the area of the rectangle – which estimates the original integral – is 2

√
ln 2.


Here, side by side, are the estimate and the exact integral:

∞ 

2 
{ √
π = 1.7724 . . . (exact),

e−x dx = 2
√

ln 2 = 1.6651 . . . (estimate).−∞ 

The FWHM estimate is accurate to 6%, twice as accurate as the previous 
recipe. It’s far better than one has a right to expect for doing only two lines 
of algebra! 

3.5 Stirling’s formula 

The FWHM result accurately estimates one of the most useful quantities in 
applied mathematics: 

n! ≡ n × (n − 1) × (n − 2) × · · · × 2 × 1. 

We meet this quantity again as a picture proof in Section 4.6. Here we 
estimate n! by discretizing an integral representing n!: 

∞ 
nt e−t dt = n! 

0 

You may not yet know that this integral is n!; you can show it either with 
integration by parts or see ?? on generalization to learn differentiation under 

with a peak at x = 1/2. 
You can check that the product tne−t has a peak by looking at its behavior 

in two extreme cases: in the short run t → 0 and in the long run t → ∞. 
When t 0, the exponential is 1, but the polynomial factor tn wipes it →
out by multiplying by zero. When t → ∞, the polynomial factor tn pushes 
the product to infinity while the exponential factor e−t pushes it to zero. 

the integral sign. For now accept the integral representation on faith, with a 
promise to redeem the trust in a later chapter. 

x1− x

x(1− x)

To approximate the integral, imagine what the inte­
grand tne−t looks like. It is the product of the increasing 
function tn and the decreasing function e−t. Such a prod­
uct usually peaks. A familiar example of this principle is 
the product of the increasing function x and the decreas­
ing function 1 − x. over the range x ∈ [0, 1] where both 
functions are positive. The product rises from and then falls back to zero, 
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3.5 Stirling’s formula 39 

An exponential beats any polynomial. To see why and avoid the negative 
exponent −t muddying this issue, compare instead et with tn as t →∞. The 

tTaylor series for e contains all powers of t, so it is like an infinite-degree 
polynomial. So et/tn goes to infinity once t gets large enough. Similarly, 
its reciprocal tne−t goes to zero as t → ∞. Being zero at also t = 0, the 
product is zero at both extremes and positive elsewhere. Therefore it peaks 
in between. Maybe it has more than one peak, but it should have at least 
one peak. Furthermore, as n increases, the tn polynomial factor strengthens, 
so the e−t requires a larger t to beat down the .

tne−t

half maxFWHM

into 

tn Therefore, as n increases 
the peak moves right. 

With tne−t having a peak, the FWHM recipe 
can approximate its area. The recipe requires find­
ing the height (the maximum of the function) and 
the width (the FWHM) of the approximating rec­
tangle. To find these parameters, slurp the tn 

the exponent: 

tn e−t = e n ln t e−t = e n ln t−t . 

The exponent f(t) ≡ n ln t − t is interesting. As t → 0, the ln t takes f(t) to 
−∞. As t → ∞, the −t takes f(t) again to −∞. Between these limits, it 
peaks. To find the maximum, set f ′(t) = 0: 

f ′(t) = n
t 
− 1 = 0, 

or tpeak = n. As we predicted, the peak moves right as n increases. The 
height of the peak is one item needed to estimate the rectangle’s area. At the 
peak, f(t) is f(n) = n ln n − n, so the original integrand, which is ef(t), is 

n ( )n 
e f (tpeak) = e f (n) = e n ln n−n = n = n . 

en e 

To find the width, look closely at how f(t) behaves near the peak t = n by 
writing it as a Taylor series around the peak: 

f(t) = f(n) + f ′(n)(t − n) + 
2
1 
f ′′(n)(t − n)2 + · · · . 

The first derivative is zero because the expansion point, t = n, is a maximum 
and there f ′(n) = 0. So the second term in the Taylor series vanishes. To 
evaluate the third term, compute the second derivative of f at t = n: 

n 1 
f ′′(n) = − 

t2 
= − 
n
. 
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Discretization 40 

So 

f(t) = n ln n − n +1 
( 

1 
) 

(t − n)2 +︸ ︷︷ ︸ 2 
× −

n 
· · · . 

f(n) ︸ ︷︷ ︸ 
f ′′(n) 

The first term gives the height of the peak that we already computed. The 
second term says how the height falls as t moves away from n. The result is 
an approximation for the integrand: 

f (t) = n n 
e−(t− . 

tne−t

√
8n ln 2

nn/en

The estimated area under ef (t) is 

n)2/2n e 
e 

The first factor is a constant, the peak height. The

second factor is the familiar Gaussian. This one is

centered at t = n and contains 1/2n in the expo­

nent but otherwise it’s the usual Gaussian with a

quadratic exponent. It falls by a factor of 2 when

(t − n)2/2n = ln 2, which is when


t = n ±
√

2n ln 2.± 

The FWHM is t+ − t , which is 
√

8n ln 2.−

then ( n )n √
8n ln 2. 

e 
× 

As an estimate for n!, each piece is correct except for the constant factor. The 
more accurate answer has 

√
2π instead of 

√
8 ln 2. However, 2π is roughly 

8 ln 2 so the approximate is, like the estimate the vanilla Gaussian integral 
(coincidence?), accurate to 6%. 

3.6 Pendulum period 

The period of a pendulum is by now a familiar topic in this book. Its differen­
tial equation becomes tractable with a bit of discretization. The differential 
equation that describes pendulum motion is 

d

dt

2

2 
θ + g
l 

sin θ = 0 

This nonlinear equation has no solution in terms of the usual functions – 
to put it more precisely, in terms of elementary functions. But you can 
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41 41 

3.6 Pendulum period 41 

understand a lot about how it behaves by discretizing. If only the equation 
were 

d

dt

2

2 
θ + g
l 
θ = 0. 

This equation is linear, and therefore possible to solve without too much 
misery – I hesitate to say that any differential equation is ‘easy’ – and its 
solution is an oscillation with angular frequency ω = g/l: 

θ(t) = θ0 cos g t . 
l 

Its period is 2π g/l, which is independent of amplitude θ

0

1

0 θ0

sin θ

θ

0

1

0 θ0

0. 
The complexity of the unapproximated pendulum equation 

arises because it has the torque-producing factor sin θ instead 
of its approximation θ. The two functions match perfectly as 
θ 0. But as θ grows – which happens with large amplitudes → 
– the equivalence becomes less accurate. One way to compare 
them is to look at their ratio (sin θ)/θ. As expected, when θ = 
0, the ratio is 1. As θ grows, the ratio falls, making the simple-
harmonic approximation less accurate. We can discretize to 
find a more accurate approximation than the usual simple-
harmonic one, yet still produce a linear differential equation. The upcoming 
figures illustrate making and refining that approximation. 

We need a discrete approximation to the difficult function 
sin θ in the range [0, θ0]. Look at the two functions θ and sin θ 
after dividing by θ; we are taking out the common big part, the 
topic of Chapter 5. The difficult function becomes (sin θ)/θ. 
The other function, a straight line, is the simple harmonic ap­
proximation, and is a useful zeroth approximation. But it does 
not produce any change in period as a function of amplitude 
(since the height of the replacement line is independent of θ0). 
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Discretization 

The next approximation does fixes that problem. 
flat line with height (sin θ0)/θ0. This line is the minimum 
height of (sin θ)/θ. Why is that choice an improvement on the 
first approximation, using the maximum height of 1? Because 
in this choice, the height varies with amplitude, so the period 
varies with amplitude: This choice explains a physical effect 
that the first choice approximated into oblivion. In this second 
approximation, the torque term (g/l) sin θ becomes 

g sin θ0
θ . 
l θ0 

Starting from the simple-harmonic approximation, this choice is equivalent 
to replacing gravity by a slightly weaker gravity: 

sin θ0 
g g × .→ 

θ0 

The Taylor series for sin gives 

sin θ0 
θ0 
≈ 1 − 

θ20 
6 
. 

The fake g is then 

gfake = g 
( 

1 − 
θ2 0 
6 

) 

. 

Using this fake g, the period becomes 

T ≈ 2π l
. 

gfake 

To compute g−1/2 requires another Taylor series: fake 

(1 + x)−1/2 ≈ 1 − 
x 
2 
. 

Then 

42 

0

1

0 θ0

Use a 

1 + θ
2 
.T ≈ 2π 

g

l 
12 
0 
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3.7 What have you learnt 

0

1

0 θ0

0

1

0 θ0

So it 

The
To im-

43 

This period is an overestimate because it assumed the 
weakest torque adjustment factor: scaling the torque by the 
value of (sin θ)/θ at the endpoints of the swing when θ = ±θ0. 
The next approximation comes from using an intermediate 
height for the replacement line. Equivalently, say that the 
pendulum spends half its flight acting like a spring, where the 
torque contains just θ; and half its flight where the torque has 
the term θ(sin θ0)/θ0. Then the period is an average of the 
simple-harmonic period T = 2π l/g with the preceding underestimate: 

l 0T = 2π 
( 

1 + θ
2) 

. 
g 24 

The next step – and here I am pushing this method per­
haps farther than is justified – is to notice that the pendulum 
spends most of its time where it moves the slowest. 
spends most of time near the endpoints of the swings, where 
the simple-harmonic approximation is the least accurate. So 
the endpoint-only underestimate estimate for T should be weighted 
slightly more than the simple-harmonic overestimate. 
most recent estimate weighted these pieces equally. 
prove it, count the endpoint estimate, say, twice and the center estimate 
once. This recipe has a further justification in that there are two endpoints 
and only one center! Then the period becomes 

l 0T = 2π 

√ ( 

1 + θ
2 ) 

g 18 

The true coefficient, which comes from doing a power-series solution, is 1/16 
so this final weighted estimate is very accurate! 

3.7 What have you learnt 

Discretization makes hard problems simple. The recipe is to replace a com­
plicated function by a rectangle. The art is in choosing the height and width 
of the rectangle, and you saw two recipes. In both, the height is the max­
imum of the original function. In the first, easier recipe, the width is the 
range over which the function changes by a factor of e; this recipe is useful 
for linear exponential decays. The second recipe, the FWHM, is useful for 
messy functions like spectroscope absorption peaks and Gaussians. In that 
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 44 

recipe, the width is the width over which the function goes from one-half the 
maximum and then returns to that value. 
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Picture proofs
4 
Do you ever walk through a proof, understand each step, yet not believe the 
theorem, not say ‘Yes, of course it’s true’? The analytic, logical, sequential 
approach often does not convince one as well as does a carefully crafted 
picture. This difference is no coincidence. The analytic, sequential portions 
of our brain evolved with our capacity for language, which is perhaps 105 

years old. Our pictorial, Gestalt hardware results from millions of years 
of evolution of the visual system and cortex. In comparison to our visual 
hardware, our symbolic, sequential hardware is an ill-developed latecomer. 
Advertisers know that words alone do not convince you to waste money on 
their clients’ junk, so they spend zillions on images. This principle, which has 
higher applications, is the theme of this chapter. 

4.1 Adding odd numbers 

Here again is the sum from Section 2.1 that illustrated using extreme cases 
to find fencepost errors: 

S = 1 + 3 + 5 + ︸ ︷︷ · · · ︸ 
n terms 

Before I show the promised picture proof, let’s go through the standard 
method, proof by induction, to compare it later to the picture proof. An 
induction proof has three pieces: 

1.	 Verify the base case n = 1. With n = 1 terms, the sum is S = 1, which 
equals n2. QED (Latin for ‘quite easily done’). 

2.	 Assume the induction hypothesis. Assume that the sum holds for n terms: 
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Picture proofs 46 

n

(2k − 1) = n 2 . 
1 

This assumption is needed for the next step of verifying the sum for n +1 
terms. 

3.	 Do the induction step of verifying the sum for n +1 terms, which requires 
showing that 

n+1

(2k − 1) = (n + 1)2 . 
1 

The sum splits into a new term and the old sum: 
n+1	 n

(2k − 1) = 2n + 1 + (2k − 1). 
1 new term 1 

The sum on the right is n2 courtesy of the induction hypothesis. So 

n+1

(2k − 1) = 2n + 1 + n 2 = (n + 1)2 . 
1 

The three parts of the induction proof are complete, and the theorem is 

understand this picture, you never forget why adding the 
first n odd numbers gives the perfect square n2. 

proved. However, the parts may leave you feeling that you follow each step 
but do not see why the theorem is true. 

1

3

5

7

9
Compare it against the picture proof. Each term in the 

sum S adds one odd number represented as the area of an 
L-shaped piece. Each piece extends the square by one unit 
on each side. Adding n terms means placing n pieces and 
making an n×n square. [Or is it an (n−1)×(n−1) square?] 
The sum is the area of the square, which is n2. Once you 

4.2 Geometric sums 

Here is a familiar series: 

1 1 1 
S = 1 + 

2 
+ 

4 
+ 

8 
+ · · · . 
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4.3 Arithmetic mean–geometric mean inequality 47 

The usual symbolic way to evaluate the sum is with the formula for a geo­
metric series. You can derive the formula using a trick. First compute 2S by 
multiplying each term by 2: 

1 1 12S = 2 + 1 + 
2 

+ 
4 

+ 
8 

+ .· · · 

S 

This sum looks like S, except for the first term 2. So 2S = 2 + S 

0

1
2

3
4

5

The 

and S = 2. 
The result, though correct, may seem like magic. Here then is a 

picture proof. A square with unit area represents the first term, which 
is 1/20 (and is labelled 0). The second term is a 1 × 1/2 rectangle 
representing 1/21 (and is labelled against by the exponent 1). 
third term is a 1/2 × 1/2 square placed in the nook. The fourth term 
is, like the second term, a rectangle. With every pair of terms, the 
empty area between all the rectangles and three-quarters of the 1 × 2 
outlining rectangle fills in. In the limit, the sum fills the 1×2 rectangle, 
showing that S = 2. 

4.3 Arithmetic mean–geometric mean inequality 

A classic inequality is the arithmetic mean–geometric mean inequality. Here 
are a few numerical examples before the formal statement. Take two numbers, 
say, 1 and 2. Their arithmetic mean is 1.5. Their geometric mean is 

√
1 × 2 = 

1.414 . . .. Now try the same operations with 2 and 3. Their arithmetic mean 
is 2.5, and their geometric mean is 

√
2 × 3 = 2.449 . . .. In both cases, the 

geometric mean is smaller than the arithmetic mean. This pattern is the 
theorem of the arithmetic mean and geometric mean. It says that when 
a, b ≥ 0, then 

a + b 
2︸ ︷︷ ︸ 

AM 

≥ 
√
ab︸︷︷︸ 

GM 

, 

where AM means arithmetic mean and GM means geometric mean. 
It has at least two proofs: symbolic and pictorial. A picture proof is 

hinted at by the designation of 
√
ab as the geometric mean. First, however, 

I prove it symbolically. Look at (a − b)2. Since it is a square, 
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Picture proofs 48 

(a − b)2 ≥ 0. 

Expanding the left side gives a2 − 2ab + b2 ≥ 0. Now do the magic step of 
adding 4ab to both sides to get 

a 2 + 2ab + b2 ≥ 4ab. 

The left side is again a perfect square, whose perfection suggests taking the 
square root of both sides to get 

a + b ≥ 2
√
ab. 

Dividing both sides by 2 gives the theorem: 

a + b √
ab≥ ︸︷︷︸ ︸ ︷︷2 ︸ GMAM 

Maybe you agree that, although each step is believable (and correct), the 
sequence of all of them seems like magic. The little steps do not reveal the 
structure of the argument, and the why is still elusive. For example, if the 
algebra steps had ended with 

a + b √
ab, 

4 
≥ 

it would not have seemed obviously wrong. 

√
ab

a + b
2

a b

a 

We would like a proof whose 
result could not have been otherwise. 

Here then is a picture proof. Split the 
diameter of the circle into the lengths 
and b. The radius is (a + b)/2, which is 
the arithmetic mean. Now we need to find 
the geometric mean, whose name is auspi­
cious. Look at the second half chord rising 
from the diameter where a and b meet. It is 
also the height of the dotted triangle, and 
that triangle is a right triangle. With right 
triangles everywhere, similar triangles must come in handy. Let the so-far­
unknown length be x. By similar triangles, 

x b = , 
a x 

4 48 
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4.3 Arithmetic mean–geometric mean inequality 49 

so x = 
√
ab, showing that the half chord is the geometric mean. That 

half chord can never be greater than the radius, so the geometric mean is 
never greater than the arithmetic mean. For the two means to be equal, the 
geometric-mean half chord must slide left to become the radius, which hap­
pens only when a = b. So the arithmetic mean equals the geometric mean 
when a = b. 

Compare this picture proof with the symbolic proof. The structure of 
the picture proof is there to see, so to speak. The only non-obvious step is 
showing that the half chord is the geometric mean 

√
ab, the geometric mean. 

Furthermore, the picture shows why equality between the two means results 
only when a = b: Only then does the half chord become the radius. 

Here are two applications of the AM–GM inequality to problems from 
introductory calculus that one would normally solve with derivatives. In the 
first problem, you get l = 40 m of fencing to mark off a rectangular garden. 
What dimensions does the garden have in order to have the largest area? If 
a is the length and b is the width, then l = 2(a + b), which is 4 × AM. The 
area is ab, which is (GM)2. Since AM ≥ GM, the consequence in terms of 
this problem’s parameters is 

AM = 
4 
l ≥
√

area = GM. 

Since the geometric mean cannot be larger than l/4, which is constant, the 
geometric mean is maximized when when a = b. For maximum area, therefore 

base

flap x

x

choose a = b = 10 m and get A = 100 m2. 
The next example in this genre is a more difficult three-

dimensional problem. Start with a unit square and cut out four 
identical corners, folding in the four edges to make an open-
topped box. What size should the corners be to maximize the 
box volume? Call x the side length of the corner cutout. Each 
side of the box has length 1 − 2x and it has height x, so the 
volume is 

V = x(1 − 2x)2 . 

For lack of imagination, let’s try the same trick as in the previous problem. 
Two great mathematicians, George Polya and Gabor Szego, commented that, 
‘An idea which can be used once is a trick. If it can be used more than once 
it becomes a method.’ So AM–GM, if it helps solve the next problem, gets 
promoted from a mere trick to the more exalted method. 

49 49 
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In the previous problem, the factors in the area were a and b, and their 
sum a + b was constant because it was fixed by the perimeter. Then we could 
use AM–GM to find the maximum area. Here, the factors of the volume are 
x, 1 − 2x, and 1 − 2x. Their sum is 2 − 3x, which is not a constant; instead it 
varies as x changes. This variation means that we cannot apply the AM–GM 
theorem directly. The theorem is still valid but it does not tell us what we 
want to know. We want to know the largest possible volume. And, directly 
applied, the theorem says that the volume is never less than the cube of the 
arithmetic mean. Making the volume equal to this value does not guarantee 
that the maximum volume has been found, because the arithmetic mean is 
changing as one changes x to maximize the geometric mean. The largest 
volume may result where the GM is not equal to the changing AM. In the 
two-dimensional problem, this issue did not arise because the AM was already 
constant (it was a fixed fraction of the perimeter). 

If only the factor of x were a 4x, then the 3x would disappear when 
computing the AM: 

4x + (1 − 2x) + (1 − 2x) = 2. 

As Captain Jean-luc Picard of The Next Generation says, ‘Make it so.’ You 
can produce a 4x instead of an x by studying 4V instead of V : 

4V = 4x × 1 − 2x × 1 − 2x. 

The sum of the factors is 2 and their arithmetic mean is 2/3 – which is 
constant. The geometric mean of the three factors is 

(4x(1 − 2x)(1 − 2x))1/3 = (4V )1/3 . 

So by the AM–GM theorem: 

AM = 
3
2 ≥ (4V )1/3 = GM, 

so 

1 
( 

2
)3 2 

V ≤ 
4 3 

=
27
. 

The volume equals this constant maximum value when the three factors 4x, 
1 − 2x, and 1 − 2x are equal. This equality happens when x = 1/6, which is 
the size of the corner cutouts. 
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4.4 Logarithms 51 

4.4 Logarithms 

Pictures explain the early terms in many Taylor-series approximations. As 
an example, I derive the first two terms for ln(1+x). The logarithm function 
is defined as an integral ∫ 1+x dtln(1 + x) = . 

1 t 

An integral, especially a definite integral, suggests an area as its 

area = x

1 1 + x

1

1/t

t

This 

area ≈
x(1− x)

1 1 + x

1/t

t
1
−

x

2. 

area ≈
x− x2/2

1 1 + x

1/t

t

1
−

x
x

picture. As a first approximation, the logarithm is the area of 
the shaded, circumscribed rectangle. The rectangle, although it 
overestimates the integral, is easy to analyze: Its area is its width 
(which is x) times its height (which is 1). So the area is x. 
area is the first pictorial approximation, and explains the first 
term in the Taylor series 

ln(1 + x) = x − · · · . 

An alternative to overestimating the integral is to underesti­
mate it using the inscribed rectangle. Its width is still x but its 
height is 1/(1 + x). For small x, 

1 
1 + x 

≈ 1 − x, 

as you can check by multiplying both sides by 1 + x: 

1 ≈ 1 − x 2 . 

This approximation is valid when x2 is small, which happens when x is small. 
Then the rectangle’s height is 1 − x and its area is x(1 − x) = x − x

For the second approximation, average the over- and under­
estimate: 

ln(1 + x) ≡ area ≈ 
x + (x 

2
− x2) = x − 

x

2 

2 
. 

These terms are the first two terms in the Taylor series for ln(1+ 
x). The picture for this symbolic average is a trapezoidal area, 
so this series of pictures explains the first two terms. Its error 
lies in making the smooth curve 1/t into a straight line, and this 
error produces the higher-order terms in the series – but they are difficult to 
compute just using pictures. 
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Alternatively you can derive all the terms from the binomial theorem and 
the definition of the logarithm. The logarithm is ∫ 1+x dt 

∫ x 1ln(1 + x) ≡ 
1 t 

= 
0 1 + t 

dt. 

The binomial theorem says that 

1 + 
1 
t 

= 1 − t + t2 − t3 + · · · , 

so 

x 

ln(1 + x) = (1 − t + t2 − t3 + ) dt.· · ·
0 

Now integrate term by term; although this procedure produces much gnashing 
of the teeth among mathematicians, it is usually valid. To paraphrase a motto 
of the Chicago police department, ‘Integrate first, ask questions later.’ Then 

2 3 4 
ln(1 + x) = x − 

x

2
+ x

3 
− 
x

4
+ · · · . 

The term-by-term integration shows you the entire series. Understand both 
methods and you will not only remember the logarithm series but will also 
understand two useful techniques. 

As an application of the logarithm approximation, I estimate ln 2. A 
quick application of the first two terms of the series gives: 

x2 ∣ 1 1ln(1 + x) ≈ x − 
2 
∣ 
x=1 = 1 − 

2
=

2
. 

That approximation is lousy because x is 1, so squaring x does not help 
produce a small x2/2 term. A trick, however, improves the accuracy. Rewrite 
ln 2 as 

ln 2 = ln 
2
4
/

/

3
3 = ln 

3
4 − ln 2/3. 

Then approximate ln(4/3) as ln(1+x) with x = 1/3 and approximate ln(2/3) 
as ln(1 + x) with x = −1/3. With x = ±1/3, squaring x produces a small 
number, so the error should shrink. Try it: 

4 ∣ 1 1 
( 

1
)2 

ln
3 

= ln(1 + x)∣ 
x=1/3 ≈ 

3 
− 

2 
· 

3 
, 

2 ∣ 1 1 
( 

1
)2 

ln
3 

= ln(1 + x)∣ 
x=−1/3 ≈ − 

3 
− 

2 
· − 

3 
. 
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When taking the difference, the quadratic terms cancel, so 

4 2 2ln 2 = ln 
3 
− ln 

3 
≈ 

3
= 0.666 . . . . 

The true value is 0.697 . . ., so this estimate is accurate to 5%! 

4.5 Geometry 

The following pictorial problem has a natural pictorial solution: 

How do you cut an equilateral triangle into two equal halves using the 
shortest, not-necessarily-straight path? 

Here are several candidates among the infinite set of possibilities for the path. 

l = 1/
√

2 l =
√

3/2 l = 1 l = (a mess)

Let’s compute the lengths of each bisecting path, with length measured in 
units of the triangle side. The first candidate encloses an equilateral triangle 
with one-half the area of the original triangle, so the sides of the smaller, 
shaded triangle are smaller by a factor of 

√
2. Thus the path, being one of 

those sides, has length 1/
√

2. In the second choice, the path is an altitude 
of the original triangle, which means its length is 

√
3/2, so it is longer than 

the first candidate. The third candidate encloses a diamond made from two 
small equilateral triangles. Each small triangle has one-fourth the area of the 
original triangle with side length one, so each small triangle has side length 
1/2. The bisecting path is two sides of a small triangle, so its length is 1. 
This candidate is longer than the other two. 

The fourth candidate is one-sixth of a circle. To find its length, find the 
radius r of the circle. One-sixth of the circle has one-half the area of the 
triangle, so 

πr2 = 6 × 
2
1 
Atriangle = 6 × 

1 1 
√

3 
.︸︷︷︸ 2 

× ︸2 
× 1 ︷︷× 

2︸Acircle 
Atriangle 
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Multiplying the pieces gives 

3
√

3 
πr2 = ,

4 
and 

3
√

3 
r = .

4π 

The bisection path is one-sixth of a circle, so its length is 

2πr π 3
√

3 π
√

3 
l = = = .

6 3 4π 12 

The best previous candidate (the first picture) has length 1/
√

2 = 0.707 . . .. 
Does the mess of π and square roots produce a shorter path? Roll the 
drums. . . : 

l = 0.67338 . . . , 

which is less than 1/
√

2. So the circular arc is the best bisection path so far. 
However, is it the best among all possible paths? The arc-length calculation 
for the circle is messy, and most other paths do not even have a closed form 
for their arc lengths. 

Instead of making elaborate calculations, try a familiar method, 
symmetry, in combination with a picture. Replicate the triangle 
six times to make a hexagon, and also replicate the candidate 
path. Here is the result of replicating the first candidate (the 
bisection line going straight across). The original triangle be­
comes the large hexagon, and the enclosed half-triangle becomes 
a smaller hexagon having one-half the area of the large hexagon. 

Compare that picture with the result of replicating the circular-
arc bisection. The large hexagon is the same as for the last repli­
cation, but now the bisected area replicates into a circle. Which 
has the shorter perimeter, the shaded hexagon or this circle? The 
isoperimetric theorem says that, of all figures with the same 
area, the circle has the smallest perimeter. Since the circle and 
the smaller hexagon enclose the same area – which is three times 
the area of one triangle – the circle has a smaller perimeter than the hexagon, 
and has a smaller perimeter than the result of replicating any other path! 
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4.6 Summing series 

Now let’s look for a second time at Stirling’s approximation to n factorial. In 
Section 3.5, we found it by approximating the integral 

∞ 
nt e−t dt = n!. 

0 

The next method is also indirect, by approximat-


0

1

2

1 2 3 4 5 6 7
kThis 

ing ln n!:

n

ln n! = ln k. 
1 

This sum is the area of the rectangles. That area is

roughly the area under the smooth curve ln k.

area is


n 

ln k dk = k ln k − k = n ln n − n + 1. 
1 

Before making more accurate approximations, let’s see how this one is doing 
by taking the exponential to recover n!: 

n 

n! ≈ 
n × e. 
en 

The nn and the 1/en factors are already correct. The next pictorial correction 

0

1

2

1 2 3 4 5 6 7
k

To ap­

0

1

2

1 2 3 4 5 6 7

make the result even more accurate. 
The error in the integral approximation come from 

the pieces protruding beyond the ln k curve. 
proximate the area of these protrusions, pretend that 
they are triangles. If ln k were made of linear seg­
ments, there would be no need to pretend; even so 
the pretense is only a tiny lie. The problem become 
one of adding up the shaded triangles. 

The next step is to double the triangles, turning 
them into rectangles, and remembering to repay the 
factor of 2 before the end of the derivation. 
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∫ 

56 56 

Picture proofs 56 

The final step is to hold your right hand at the 
x = 7 line to catch the shaded pieces as you shove 
them rightward with your left hand. They stack to 
make the ln 7 rectangle. So the total overshoot, after 
paying back the factor of 2, is (ln 7)/2. For general 
n, the overshoot is (ln n)/2. The integral 1 

n ln k dk 
provides n ln n − n (from the upper limit) and 1 from 
the lower limit. So the integral and graph together produce 

0

1

2

1 2 3 4 5 6 7

ln nln n! ≈ n ln n − n + 1 + ︸︷︷2 ︸ 
protrusions 

or ( n )n 
n! ≈ e

√
n . 
e 

Stirling’s formula is 

n n 
n! ≈
√

2πn 
( )

. 
e 

The difference between the pictorial approximation and Stirling’s formula is 
the factor of e that should be 

√
2π. Except for this change of only 8%, a 

simple integration and graphical method produce the whole formula. 
The protrusion correction turns out to be the first term in an infinite series 

of corrections. The later corrections are difficult to derive using pictures, just 
as the later terms in the Taylor series for ln(1 + x) are difficult to derive 
by pictures (we used integration and the binomial theorem for those terms). 
But another technique, analogy, produces the higher corrections for ln n!. 
That analysis is the subject of Section 7.3, where the pictorial, protrusion 
correction that we just derived turns out to be the zeroth-derivative term in 
the Euler–MacLaurin summation formula. 
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5 Taking out the 
big part 

Taking out the big part, the technique of this chapter, is a species of successive 
approximation. First do the most important part of the analysis: the big part. 
Then estimate changes relative to this big part. This hygienic approach keeps 
calculations clean enough to do mentally. Here are a few examples beginning 
with products, powers, and roots, then moving to exponentials and fierce 
integrals. 

5.1 Multiplication 

Suppose you have to estimate 31.5×721. A first estimate comes from rounding 
31.5 to 30 and 721 to 700: 

31.5 × 721 ≈ 30 × 700 = 21000. 

This product is the big part whose estimation is the first step. In the second 
step, estimate the correction. You could estimate the correction directly by 
expanding the product: 

31.5 × 721 = (30 + 1.5) × (700 + 21). 

Expanding produces four terms: 

30 × 700 + 1.5 × 700 + 30 × 21 + 1.5 × 21. 
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︸ ︷︷ ︸ 

58 58 

Taking out the big part 58 

What a mess! Using fractional or relative changes cleans up the calculation. 
The first step is to estimate the fractional change in each factor: 31.5 is 5% 
more than 30, and 721 is 3% more than 700. So 

31.5 × 721 = 30 × (1 + 0.05) × 700 × (1 + 0.03) . ︸ ︷︷ ︸ ︸ ︷︷ ︸ 
31.5 721 

Reorder the pieces to combine the fractional changes: 

30 × 700 × (1 + 0.05) × (1 + 0.03) .︸ ︷︷ ︸ ︸ ︷︷ ︸ 
big part correction factor 

The big part is already evaluated, so the problem reduces to estimating the 
correction factor. An algebraic method gives 

(1 + 0.05) × (1 + 0.03) = 1 × 1 + 0.05 × 1 + 1 × 0.03 + 0.05 × 0.03 . 
tiny 

Because the last term is the product of two corrections, each small, it is 
smaller than the other terms. Ignoring it gives 

(1 + 0.05) × (1 + 0.03) ≈ 1 + 0.05 + 0.03 = 1

1

1

0.05

0.03

1

.08. 

This algebra has an elegant picture. The unit square rep­
resents the 1×1 product. Enlarge its width by 0.05 to 1+0.05, 
and enlarge its height by 0.03 to 1 + 0.03. The new rectan­
gle has area (1 + 0.05) × (1 + 0.03), which is the sought-after 
product. The four pieces of the figure correspond to the four 
terms in the expansion of (1 + 0.05) × (1 + 0.03). Relative to 
the unit square, the new rectangle has a thin rectangle on the 
right that has area 0.05 and a thin rectangle on top that has 
area 0.03. There’s also an adjustment of 0.05 × 0.03 for the gray rectangle. 
It is tiny compared to the long rectangles, so neglect it. Then the area is 
roughly 1 + 0.05 + 0.03, which is a geometric proof that the correction factor 
is roughly 

1 + 0.05 + 0.03 = 1.08. 

It represents an 8% increase. The uncorrected product is 21000, and 8% of it 
is 1680, so 

31.5 × 721 = 21000 × correction factor ≈ 21000 + 1680 = 22680. 

58 58 

http:0.05+0.03


2008-03-06 13:24:47 / rev ebd336097912+

Cite as: Sanjoy Mahajan, course materials for 18.098 / 6.099 Street-Fighting Mathematics, IAP 2008. 
            MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. 
                                            Downloaded on [DD Month YYYY].

︸ ︷︷ ︸ 

59 59 

5.1 Multiplication 59 

The true value is 22711.5, so the estimate is low by 0.15%, which is the area 
of the tiny, gray rectangle. 

This numerical example illustrates a general pattern. Suppose that you 
can easily find the product xy, as in the preceding example with x = 30 and 
y = 700, and you want a nearby product (x + ∆x)(y + ∆y), where ∆x � x 
and ∆y � y. Call ∆(xy) the change in the product xy due to the changes in 
x and y: 

(x + ∆x)(y + ∆y) = xy + ∆(xy). 

To find the new product, you could find ∆(xy) (since xy is easy). But do not 
expand the product directly: 

(x + ∆x)(y + ∆y) = xy + x∆y + y∆x + xy. 

Instead, extract the big part of the product and study the correction factor. 
The big part is xy, so extract xy by extracting x from the first factor and y 
from the second factor. The correction factor that remains is ( )( )

∆x ∆y ∆x ∆y ∆x ∆y1 + 1 + = 1 + + + . 
x y x y x y 

frac. change in xy 

The ∆x/x is the fractional change in x. The ∆y/y is the fractional change in 
y. And the (∆x/x)(∆y/y), the product of two tiny factors, is tiny compared 
to fractional changes containing one tiny factor. So, for small changes:  

fractional
 change  ∆x + ∆y


in xy 
' 
x y
   
fractional fractional


=  change  +  change  .

in x in y


In other words, for small changes: 

The fractional change in a product is the sum of fractional changes in 
its factors. 

The simplicity of this rule means that fractional changes simplify computa­
tions. 
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Taking out the big part 60 

5.2 Squares 

Squares are a particular kind of product, so we could approxi-

A = x2

x

2. Now 
. 

mate squares using the preceding algebra or pictures. Instead I 
derive the picture from scratch, to practice with pictures and to 
introduce the notion of low-entropy expressions. Let A be the 
area of a square and x be the length of its side, so A = x
imagine increasing x to x + ∆x, producing an area (x + ∆x)2

This analysis is useful if you can choose x to be a number whose 
square you know; then ∆x is the change to get to the number 
whose square you want to compute. For example, if you want to 
compute 9.22, set x = 9 and ∆x = 0.2 and find how much the area increases. 
The algebraic approach is to expand 

(x + ∆x)2 = x 2 + 2x∆x + (∆x)2 . 

An alternative approach is to elaborate the picture. 
The new area is shaded and has three parts. As long as 

A = x2

x∆x

x∆x

(∆x)2

x ∆x

∆x � x, the tiny corner square is small compared to the two 
rectangles. So the change in area is 

x∆x + x∆x = 2x∆x.∆A ≈ ︸︷︷︸ ︸︷︷︸ 
top rect. right rect. 

But this result is difficult to remember because it is has high-
entropy [6]. The combination of x and ∆x seem arbitrary. If 
∆A had turned out to be x2 or (∆x)2, it would also have seemed reasonable. 
A high-entropy form has variables scattered all over, in a seemingly uncon­
strained arrangement. A low-entropy form groups together relevant variables 
to make a form that is easy to understand and therefore to remember. 

To turn ∆A = 2x∆x into low-entropy form, divide by A = x2. This 
choice has two reasons. The first reason is the theme of this chapter: take 
out the big part. You know how to square x, so A or x2 is the big part. 
To take it out, divide the left side ∆A by A and the right side 2x∆x by x2. 
The second reason comes the method of Chapter 1: dimensions. There are 
many dimensions in the world, so requiring an expression to be dimensionless 
eliminates this freedom and reduces the entropy: 

60 60 



2008-03-06 13:24:47 / rev ebd336097912+

Cite as: Sanjoy Mahajan, course materials for 18.098 / 6.099 Street-Fighting Mathematics, IAP 2008. 
            MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. 
                                            Downloaded on [DD Month YYYY].

61 61 

5.2 Squares 61 

Expressions with dimensions have higher entropy than expressions with­
out dimensions. 

The high-entropy result has dimensions of area; to make it dimensionless, 
divide both sides by an area. For the left side ∆A, the natural, realted 
quantity is the area A. For the right side 2x∆x, the natural, related quantity 
is the area x2. So two reasons – taking out the big part and dimensions – 
suggest dividing by A = x2. A method with two justifications is probably 
sound, and here is the result: 

∆A 2x∆x ∆x 
2A 

≈ 
x

= 2
x
. 

Each side has a simple interpretation. The left side, ∆A/A, is the fractional 
change in area. The right side contains ∆x/x, which is the fractional change 
in side length. So    

fractional fractional
 change  ≈ 2 ×  change  .

in x2 in x


This statement of the result is easier to understand than the high-entropy 
form. It says that fractional changes produce fractional changes. The only 
seemingly arbitrary datum to remember is the factor of 2, but it too will 
make sense after studying cubes and square roots. 

Meanwhile you might be tempted into guessing that, because A = x2, 
the fractional changes follow the same pattern:    2fractional fractional  change  ≈  change  . 

in A in x 

That reasonable conjecture is wrong! Try a numerical example. Imagine a 
10% increase in x, from 1 to 1.1. Then x2 increases to roughly 1.2, a fractional 
increase of 0.2. If the candidate formula above were correct, the fractional 
increase would be only 0.01. 

Let’s finish the study of squares with 9.22, the numerical example men­
tioned before. Its big part is 92 = 81. Going from 9 to 9.2 is a fractional 
increase of 2/90, so 9.22 should increase by 2 × 2/90 = 4/90: 

9.22 
( 

4 
) 

≈ 81 × 1 + 
90 
≈ 81 + 3.6 = 84.6. 
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Taking out the big part 62 

The exact answer is 84.64, a mere 0.05% higher. 

5.3 Fuel efficiency 

Section 2.7 used dimensional analysis and an experiment of dropping paper 
cones to show that drag force is proportional to v2, where v is the speed 
that an object moves through a fluid. This result applied in the limit of 
high Reynolds number, which is the case for almost all flows in our everyday 
experience. Highway driving is at a roughly steady speed, so gasoline is 
burned in fighting drag rather than in lossy, stop-and-go changes of speed. 
The energy required for a car to travel a distance d at speed v is then 

E = Fd ∝ v 2d, 

where F is the drag force. In the 1970’s, oil became expensive in Western 
countries for reasons that were widely misunderstood and often misexplained 
(maybe intentionally). For a thorough analysis, see [7]. Whatever the causes, 
the results were hard to avoid. The United States reduced oil consumption by 
mandating a speed limit of 55 mph on highways. For the sake of this problem, 
imagine that cars drove at 65 mph before the speed limit was imposed. By 
what fraction does the gasoline consumption fall due to the change in speed 
from 65 to 55 mph? Pretend that the speed limit does not affect how far 
people drive. It may be a dubious assumption, since people regulate their 
commuting by total time rather than distance, but that twist can be the 
subject of a subsequent analysis (do the big part first). 

Fractional changes keep the analysis hygienic. The drag force and the 
energy consumption are proportional to v2d, and the distance d is, by as­
sumption, constant. So E ∝ v2 and    

fractional fractional
 change  = 2 ×  change  .

in E in v


A drop in v from 65 to 55 mph is a drop of roughly 15% so the energy 
consumption drops by 2 × 15% = 30%. It is a large reduction in automotive 
oil consumption. Considering the large fraction of oil consumed by car travel, 
this 30% drop in highway oil consumption produces a substantial reduction 
in total oil consumption. 
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5.4 Third powers 63 

5.4 Third powers 

The next example extends the analysis to the volume of a cube with side 
length x. The usual question recurs: If x increases by ∆x, what happens to 
the volume V ? If you do not use fractional changes, you can try to guess 
what happens by analogy with the change in area. Perhaps 

∆V ∼ x 2∆x 

or maybe 

∆V ∼ x(∆x)2? 

Both choices have a volume on each sides, so their dimensions are correct, 
and dimensions do not favor either choice. In short, it’s a pain to remember 
how to distribute the three powers of length on the right side. Should the x 
get all of them, two of them, one of them, or none? 

Instead of trying to remember the high-entropy form, work it out from 
scratch, rewrite it as a fractional change, and see how simple and low-entropy 
it becomes. The full ∆V is 

∆V = (x + ∆x)3 − x 3 = 3x 2∆x + 3x(∆x)2 + (∆x)3 . 

The terms with the higher powers of ∆x are the smallest, so ignore them. 
This approximation leaves 

∆V ≈ 3x 2∆x. 

The fractional change is 

∆V 3x2∆x ∆x 
3V 

≈ 
x

= 3 
x
. 

This result has the same form as the fractional change in area but with a 
factor of 3. In words:    

fractional fractional
 change  ≈ 3 ×  change  .

in x3 in x


The factor of 3 comes from the exponent of x in V = x3, just as the 2 came 
from the exponent of x in A = x2. Let’s look at two examples. 

For the first example, estimate 6.33. The big part is 63 = 216. Since 0.3 
is 5% larger than 6, its cube is 3 × 5% = 15% larger than 63: 
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Taking out the big part 64 

6.33 ≈ 216 × (1 + 0.15). 

To calculate 216 × 0.15, first calculate the big part 200 × 0.15, which is 30. 
Then increase the result by 8% of 30, because 216 is 8% larger than 200. 
Since 8% of 30 is 2.4: 

216 × 0.15 = 30 + 2.4 = 32.4 

Then 

6.33 ≈ 216 + 32.4 = 248.4. 

The true value is 250.047, which is only 0.7% larger. 
The second example comes from the physics of wind energy. The power 

produced by a wind turbine is related to the force exerted by the wind, which 
is (like the drag force) proportional to v2. Since power is force times velocity, 
it should be proportional to v3. Therefore a 10% increase in wind speed 
increases generated power by 30%! The hunt for fast winds is one reson that 
wind turbines are placed high in the atmosphere (for example, on cliffs) or at 
sea, where winds are faster than near land surfaces. 

5.5 Reciprocals 

The preceding examples used positive exponents. To explore fractional changes 
in new territory, try a negative exponent. This example is about the simplest 
one: reciprocals, where n = −1. Suppose that you want to estimate 1/13 
mentally. The big part is 1/10 because 10 is a nearby factor of 10, which 
means its reciprocal is easy. So 1/13 ≈ 0.1. To get a more accurate approxi­
mation, take out the big part 1/10 and approximate the correction factor: 

1 1 1 
13 

= 
10 
× 

1 + 0.3
. 

The correction factor is close to 1, reflecting that most of the result is in the 
big part 1/10. The correction factor has the form (1+x)−1, where x = 0.3. It 
is therefore approximately 1 − x as I hope the following example and picture 
will convince you. If a book is discounted 10% and shipping costs add 10% of 
the discounted price, the final total is almost exactly the original price. Try 
an example with a $20 book. It gets reduced to $18 but shipping adds $1.80, 
for a total of $19.80. Except for the tiny error of $0.20, a 10% increase and 
a 10% decrease cancel each other. In general 
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5.5 Reciprocals 65 

(1 − x) × (1 + x) ≈ 1. ︸ ︷︷ ︸ ︸ ︷︷ ︸ 
decrease increase 

The picture confirms the algebra. Relative to the original unit 

1
+

x

1− x

gain

lo
ss

2 is 

square, the new (1 − x) × (1+ x) rectangle loses a rectangle on the 
right with area x and gains a rectangle on the top, also with area 
x. So the gain cancels the loss, keeping the area at 1. The error in 
this tally is the tiny square with area x2; however, as long as x
small, do not worry. That pictorial approximation leads to 

1 
1 + x 

≈ 1 − x. 

In words,    
fractional fractional  change  = −1 ×  change  . 

in z−1 in z 

If z increases by 30%, from 1 to 1.3, then z−1 decreseas by 30%, from 1 
to 0.7. So 1/1.3 = 0.7 and 

1 1 1 
13 

= 
10 
× 

1.3 
≈ 0.1 × 0.7 = 0.07. 

The error in the approximation comes from the neglected x2 term in the 
reciprocal (1 + x)−1. To reduce the error, reduce x by making the big part a 
close approximation. Massage the original fraction to make the denominator 
close to 1/100: 

1 8 8 8 1 
13 
× 

8 
= 

104 
= 

100 
× 

1.04
. 

The big part 8/100 = 0.08 is still easy, and the correction factor 1.04 has a 
smaller x: only 0.04. A 4% increase in a denominator produces a 4% decrease 
in the quantity itself, so 

1 
13 
≈ 0.08 − 4%, 

where the −4% means ‘subtract 4% of the previous quantity’. To find the 
4%, mentally rewrite 0.08 as 0.0800. Since 4% of 800 is 32, reduce the 0.08 
by 0.0032: 

1 
13 
≈ 0.0800 − 0.0032 = 0.0768. 
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Taking out the big part 66 

To make an even more accurate value, multiply 1/13 by 77/77 to get 77/1001. 
The big part is 0.077 and the correction factor is a reduction by 0.1%, 
which is 0.00077. The result is 0.076923. For comparison, the true value 
is .0769230769 . . .. 

The second application follows up the reduction in gasoline consumption 
due to a 55-mph speed limit, analyzed in Section 5.3. How much does the 
reduction in energy consumption increase fuel efficiency? Fuel efficiency is 
inversely proportional to energy consumption, so the −30% change in energy 
consumption produces a +30% change in fuel efficiency. It is often measured 
in miles per gallon, and a typical value for highway driving may be 35 mph. 
The 55 mph speed limit would increase it to roughly 45 mph, a larger increase 
than the legally mandated engineering increases over the last few decades. 

5.6 Square roots 

After positive and negative integer exponents, the next frontier is fractional 
exponents. The most common example is square roots, so let’s apply these 
methods to 

√
10. First take out the big part from 

√
10. The big part is from 

the number whose square root is easy, which is 9. So factor out 
√

9: 

√
10 = 

√
9 × 1 + 

9
1 
. 

The problem reduces to estimating 
√

1 + x with x = 1/

1

1

x

2

x/2

1

9 in 
this case. Reversing the analysis for squaring in Section 5.2 
produces a recipe for square roots. For squaring, the problem 
was to find the area given the side length. Here the problem 
is to find the side length 

√
1 + x given that the area is 1 + 

x. Relative to the unit square, the three shaded areas that 
make an L contribute the extra area x. The width of the 
vertical rectangle, or the height of the horizontal rectangle, is 
the change in side length. To find those dimensions, study the 
areas. Most of the contribution comes from the two dark rectangles, so ignore 
the tiny gray square. In that approximation, each rectangle contributes an 
area x/2. The rectangles measure 1× ∆x or ∆x × 1, so their small dimension 
is roughly ∆x = x/2. Thus the side length of the enclosing square is 1 + x/2. 
This result produces the first square-root approximation: 

√
1 + x ≈ 1 + x.

2 
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5.6 Square roots 67 

The right side represents a fractional increase of x/2, so    
fractional 1 fractional
 change   change  ,


in 
√
z 

' 
2 
× 

in z


or in words 

A fractional change in z produces one-half the fractional change in 
√
z. 

This result is the missing piece in estimating 
√

10. The missing step was √
1 + x with x = 1/9. Using the approximation, 

1 11 + 
9 
≈ 1 + 

18
. 

So increase the big part (which is 3) by 1/18: 
√

10 ≈ 3 × 1 + 1 = 31 = 3.166 . . . . 
18 6 

The true value is 3.1622 . . .; the estimate is accurate to 0.14%, a reasonable 
trade for three lines of work. 

A few more lines and a refined picture increase the accuracy. The previous 
analysis ignored the tiny gray square. But now we know enough about the 
diagram to account for it, or at least to account for most of it. Neglecting 
the tiny square produced a square of side 1 + x/2, which has area 1 + x plus 
the area of the tiny square. The tiny square is x/2 on each side so its area is 
x2/4. The error in the first approximation 

√
1 + x = 1 + x/2 

1

1 + x/2

arises from this 
extra area. 

To fix the approximation, shrink the big square slightly, just 
enough to remove an L-shaped shaded piece with area x2/4. The 
dimensions of the L cannot be determined exactly – or else we 
could take square roots exactly – but it is solvable almost exactly 
using the knowledge from the earlier approximations. The analy­
sis is by successive approximations. The L has two arms, each 
almost a thin rectangle that is as long or tall as the whole square, 
which means a length of 1 + x/2. The ‘almost’ comes from ig­
noring the miniscule corner square where the two arms overlap. 
In this approximation, each arm has area x2/8 in order that the L have area 
x2/4. Since each sliver has length 1 + x/2, the widths are 
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area x2/8width = = 
length 1 + x/2

. 

The 1 + x/2 in the denominator is a fractional increase in the denominator 
of x/2, so it is a fractional decrease of x/2 in the numerator: 

x x x x x= 
1 + 

2/

x/

8
2 
≈ 

8 

2 ( 
1 − 

2 

) 

8 

2 
− 

16

3 
. 

This result is the thin width of the either rectangle arm. So shrink each side 
of the old square by x2/8 − x3/16, giving the next approximation to 

√
1 + x: 

x x√
1 + x = 1 + x 

8 

2 
+ 

3 

2 
− 

16
. 

The cubic term x3/16 is a bonus. We tried to compute the approximation 
after 1 + x/2, which presumably would give the coefficient of the x2/8 term, 
yet we get the x3 coefficient for free! 

For mental calculation, I often neglect the cubic term. And, consistent 
with taking out the big part, I represent the x2/8 as an adjustment on the 
next biggest part, which is the x/2 term: 

x√
1 + x = 1 + x 

( 
1 − 

) 
.

2 4 

This formula gives the next approximation for 
√

10. The zeroth approxima­
tion is 

√
10 = 3, which is the big part. The next approximation includes the 

x/2 term to give 

√
10 = 3 + 1

6
. 

The correction is 1/6. With x = 1/9, the correction needs reducing by x/4 = 
1/36. Because 1/36 of 1/6 is 1/216, the next approximation is 

1 1√
10 = 3 + 

6 
− 

216
. 

For 1/216 use fractional changes to approximate it: 216 is 8% larger than 
200, so 

1 1 
216 
≈ 

200
−8%. 

0.0050 

The percentage is not hard: 8% × 50 = 4, so 

1 
216 
≈ 0︸.0050︷︷ ︸ −0.0004 = 0.0046. 
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Thus 

√
10 ≈ 3 + 0.1666 − 0.0046 ≈ 3.1626. 

The true value is 3.162277 . . ., so the estimate is accurate to 0.01%. 
Estimating square roots often benefits from a trick to speed convergence 

of the series. To see the need for the trick, try to estimate 
√

2 using the 
preceding approximations. The big part is 

√
1, which is no help. What 

remains is the whole problem: 
√

1 + x with x = 1. Its first approximation is 

√
2 ≈ 1 + x 

2 
=

2
3 
. 

Compared to the true value 1.414 . . . this approximation is large by 6%. The 
next approximation includes the x2/8 term: 

x2 11√
2 ≈ 1 + x 

2 
− 

8 
= 

8 
= 1.375, 

which is small by roughly 3%. The convergence is slow because x = 1, so 
successive terms do not shrink much despite the growing powers of x. If only 
I could shrink x! The following trick serves this purpose: 

√
2 = √4/3 

.
2/3

Each square root has the form 
√

1 + x where x = ±1/3. Retain up to the 
x/2 term: 

√
2 = √4/3 1 + 1/6 7 = 1.4.

2/3 
≈ 

1 − 1/6
=

5 

This quick approximation is low by only 1%! With the x2/8 correction for 
each square root, the approximation becomes 

√
2 ≈ 83/59 = 1.406 . . ., which 

is low by 0.5%. The extra effort to include the quadratic term is hardly worth 
only a factor of 2 in accuracy. 

5.7 In general 
Look at the patterns for fractional changes. Here they are, in the order that 
we studied them: 
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   
fractional fractional
 change  ' 2 ×  change  ,


in z2 in z
   
fractional fractional
 change  ' 3 ×  change  ,


in z3 in z
   
fractional fractional  change  ' −1 ×  change  , 

in z−1 in z    
fractional fractional
 change  ' 1/2 ×  change  .


in z1/2 in z 

The general pattern is    
fractional fractional
 change  ' n ×  change  .


nin z in z 

Before trying to prove it, check an easy case that was not part of the data used 
to make the generalization: n = 1. The fractional changes in z and z1 are 
identical, so the pattern works. You can also check it when n is a nonnegative 

ninteger. In that case, z is a product of n factors of z. The product principle 
from Section 5.1 is that the fractional change in a product is the sum of 
fractional changes in its factors. With n identical factors, the sum is indeed 
n times the fractional change in each factor. 

The shortest proof for general n is by logarithmic differentiation. As the 
name says: First take the logarithm and then differentiate. The logarithm of 

nf = z is n log z. Differentiating, or rather taking the differential, gives 

df dz = n . 
f z 

That result is exact for infinitesimal changes (dz = 0). For finite changes, use 
∆z instead of dz and turn the equals sign into an ≈: 

∆f ∆z 
,

f 
≈ n
z 

which is the symbolic expression of the general pattern: 

The fractional change in zn is n times the fractional change in z. 
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5.8 Seasons 

An application of these results is to evaluate a common explanation for sea­
sons. It is often said that, because the earth is closer to the sun in the summer 
than in the winter, summers are warmer than winters. The earth–sun dis­
tance does vary throughout the year because the earth orbits in an ellipse 
rather than a circle. As the distance varies, so does the solar flux, which is 
the amount of solar energy per unit area hitting the surface. The flux radi­
ates back to space as blackbody radiation, the subject of numerous physics 
textbooks. The blackbody flux is related to the surface temperature. So 
the changing the earth–sun distance changes the earth’s surface temperature. 

l

l

rmax rmin

ε = 0.5

θ = 0◦

135◦

180◦

The diagram shows an orbit with 

How large is the effect and is it enough to account for the seasons? 
The cleanest analysis is, not surprisingly, via


fractional changes starting with the fractional

change in earth–sun distance. In polar coordi­

nates, the equation of an ellipse is


l 
r = ,

1 + ε cos θ 

where ε is the eccentricity, θ is the polar angle, 
and l is the semi-latus rectum (proportional to 
the angular momentum of the orbit). 
eccentricity of 0.5, much exaggerated compared to the earth’s orbit in order 
to show the elliptical nature of the orbit. The distance varies from rmin = 
l/(1 + ε) to rmax = l/(1 − ε). Going from rmin = l/(1 + ε) to l is a fractional 
increase of roughly ε. Going from l to rmax = l/(1 − ε) is another fractional 
increase of ε, so the earth–sun distance varies by roughly 2ε. The earth’s 
orbit has ε = 0.016 or 1.6%, meaning that the distance varies by 3.2%. As a 
check on that number, here is the relevant orbital data: 

rmin = 1.471 108 km,· 
rmax = 1.521 108 km.· 

These distances differ by roughly 3.2%. 
The second step is to estimate the fractional change in flux produced 

by this fractional change in distance. The total solar power P spreads over 
a giant sphere with surface area A = 4πd2. The power per area, which is 
flux, is P/A ∝ d−2. Because of the −2 exponent, a distance increase of 3.2% 
produces a flux decrease of 6.4%. 
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The third step is to estimate the fractional change in temperature pro­
duced by this fractional change in incoming flux. The outgoing flux is black­
body radiation, and it equals the incoming flux. So the outgoing flux also 
changes by 6.4%. Statistical mechanics – the Stefan–Boltzmann law – says 
that blackbody flux F is proportional to T 4, where T is the surface temper­
ature: 

4F = σT . 

The σ is the Stefan–Boltzmann constant, a ghastly combination of the quan­
tum of action ~, the speed of light c, Boltzmann’s constant kB, and π2/60. 
But its composition is not relevant, because we are interested only in the 
fractional change in T . The freedom comes from using fractional changes, 
and is one of the most important reasons to use them. Since T ∝ F 1/4, if 
flux changes by 6.4%, then T changes by 6.4%/4 or 1.6%. To find the actual 
change in temperature, multiply this percentage by the surface temperature 
T . Do not fall into the trap of thinking that, in winter anyway, the tempera­
ture is often 0 ◦C, so the change ∆T is also 0 ◦C! The blackbody flux F ∝ T 4 

depends on T being an absolute temperature: measured relative to absolute 
zero. On one such scale, the Kelvin scale, T = 300 K so a 1.6% variation is 
about 5 K. The reference points of the Celsius and Kelvin scales are different, 
but their degrees are the same size, so a 5 K difference is also a 5 ◦C differ­
ence. This change is too small to account for the difference between summer 
and winter, making the proposed explanation for seasons implausible. The 
explanation has other flaws, such as not explaining how Australia and Europe 
have opposite seasons despite being almost exactly equidistant from the sun. 
If orbital distance changes do not produce seasons, what does? 

5.9 Exponentials 

The preceding examples investigated the approximation 

(1 + x)n ' 1 + nx 

where the exponent n was a positive integer, negative integer, and even a 
fraction. The examples used moderate exponents: 1/2 for the square roots, 
−1 for reciprocals, and −2 and 1/4 for the seasons. Now push n to an 
extreme, but skillfully. If you simply make n huge, then you end up evaluating 
quantities like 1.1800, which is not instructive. Instead, let n grow but shrink 
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x in parallel to keep nx fixed. An intuitive value for nx is 1, and these 
examples keep nx = 1 while increasing n: 

1.110 = 2.59374 . . . , 
1.01100 = 2.70481 . . . , 

1.0011000 = 2.71692 . . . . 

In each case, nx = 1 so the usual approximation is 

(1 + x)n = 2 ≈ 1 + nx = 2, 

which is significantly wrong. The problem lies in nx growing too large. In 
the examples with moderate n, the product nx was much smaller than 1. So 
new mathematics happens when nx grows beyond that limited range. 

To explain what happens, guess features of the solution and then find 
an explanation related to those features. The sequence starting with 1.110 

seems to approach e = 2.718 . . ., the base of the natural logarithms. That 
limit suggests that we study not (1 + x)n but rather its logarithm: 

ln(1 + x)n = n ln(1 + x). 

As long as x itself is not large (nx can still be large), then ln(1 + x) ≈ 1 + x. 
So n ln(1 + x) ≈ nx and 

nx(1 + x)n ≈ e . 

When nx � 1, then enx approximates to 1+nx, which reproduces the familiar 
nxapproximation 1+nx. When nx grows large, the approximation e = 1+nx 

nxfails, and you have to use e itself. 

5.10 Extreme cases 

The general nth power (1 + x)n has several extreme cases depending on n, 
x, and nx. One limit is taking n 0. Then (1 + x)n turns into 1 + n ln x,→
whose proof is left as an exercise for you. The other two limits have been the 

nxsubject of the preceding analyses. When x 0, the limit is e . If nx 0→ →
in additon x 0, then enx limits to 1 + nx, which is the result from the first →
examples in this chapter. Here is a pictoral summary: 
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(1 + x)nenx

1 + n ln(1 + x)

1 + nx
n
→

0

0← x

n
x
→

0

n (log scale)

x (log scale)

nx = 1

Here are a few numerical examples of these limits: 

limit x n (1 + x)n ≈ 

n 0 1 0.1 1 + 0.1 ln 2 
x 

→ 

0 0.1 30 e3 → 

x, nx 0 0.1 3 1.3→ 

These limits come in handy in the next problem. 

5.11 Daunting integral 
As a physics undergraduate, I spent many late nights in the department 
library eating pizza while doing problem sets. The graduate students, in 
the same boat for their courses, would share their favorite mathematics and 
physics problems, which included the following from the former USSR. The 
Landau institute for theoretical physics required an entrance exam of ‘math­
ematical preliminaries’. One preliminary was to evaluate ∫ π/2 

cos100t dt 
−π/2 

to within 5% in less than 5 minutes, without a calculator or computer! That 
cos100t looks frightening. Normal techniques for trigonometric functions do 
not help. For example, this identity is useful when integrating cos2t: 
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cos2t = 1(cos 2t − 1).
2

Here it would produce ( )50 

cos100t = cos 2t − 1 
,

2 

which becomes a trigonometric monster after expanding the 50th power. The 
answer is to approximate; after all, we need an answer accurate only to 5%. 
An approximation for cos t is cos t = 1 − t2/2. So ( 2 )100 

cos100t ' 1 − 
t

2 
, 

which looks like (1 + x)n with x = −t2/2 and n = 100. In the range t ≈ 0 
where the approximation for cosine is valid, it is the extreme case x 0 of 
(1 + x)n, which is enx. So 

→ 

( 2 )100


cos100t = 1 − 
t

cos t

cos5 t

2 ,

= e−50t2 
.


2 

The integrand has the general form e−αt

which is the Gaussian analyzed in Section 2.2 
and Section 3.4. This simple conclusion, that 
a high power of a cosine becomes a Gauss­
ian, seems hard to believe, but the computer-
generated plots of cosnt for n = 1 . . . 5 show 
the cosine curve turning into the Gaussian bell shape as n increases. A plot 
is not a proof, but it increases confidence in a surprising result. 

The argument has a few flaws but do not concern yourself with them now. 
Follow Bob Marley: Don’t worry, be happy. In other words, approximate first 
and (maybe) ask questions later after getting an answer. To promote this 
sang froid or courage, I practice what I preach and defer the analysis of the 
flaws. If the limits were infinite, the integral would be 

∞ 

e−αt
2 
dt, 

−∞ 

which is doable. Alas, our limits are −π/2 to π/2 rather than from −∞
to ∞. Do not worry; just extend the limits and justify it at the end. The 
infinite-range integral of the Gaussian is 
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∞ 
2 π 

e−αt dt = . 
α−∞ 

For cos100t, the parameter is α = 50 so the original integral becomes ∫ π/2 ∫ ∞ 

e−50t2 
√ 
π 

−π/2 
cos100t dt ≈ 

−∞ 
dt = 

50
. 

Since 50 ≈ 16π, the integral is 1/16 = 0.25. The exact answer is ∫ π/2 ( ) 

−π/2 
cosnt dt = 2−n 

n/

n 
2 
π, 

whose proof I leave as a fun exercise for you. For n = 100, the result is 

12611418068195524166851562157π = 0.25003696348037 . . . 
158456325028528675187087900672 

The maxima program, which computed this exact rational-fraction multiple 
of π, is free software originally written at MIT as the Macsyma project. Using 
a recent laptop (circa 2006) with an Intel 1.83 GHz Core Duo CPU, maxima 
required roughly 20 milliseconds to compute the exact result. Our estimate 
of 1/4 used a method that requires less than, say, thirty seconds of human 
time (with practice), and it is accurate to almost 0.01%. Not a bad showing 
for wetware. 

In order to estimate accurately the computation times for such integrals, 
I tried a higher exponent: ∫ π/2 

cos10000t dt 
−π/2 

In 0.26 seconds, maxima returned a gigantic rational-fractional multiple of π. 
Converting it to a floating-point number gave 0.025065 . . ., which is almost 
exactly one-tenth of the previous answer. That rescaling makes sense: In­
creasing the exponent by a factor of 100 increases the denominator in the 
integral by 

√
100 = 10. 

Now look at the promised flaws in the argument. Here are the steps in 
slow motion, along with their defects: 

1.	 Approximate cos t by 1 − t2/2. This approximation is valid as long as 
t ≈ 0. However, the integral ranges from t = −π/2 to t = π/2, taking t 
beyond the requirement t ≈ 0. 
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2.	 Approximate (1 − t2/2)n as e−nt
2/2. This approximation is valid when 

t2/2 ≈ 0. Again, however, t ranges beyond that limited domain. 

3.	 Replace the difficult limits −π/2 . . . π/2 with the easier ones −∞ . . . ∞. 
The infinite limits permit the polar-coordinates trick of Section 2.2 – 
which I call a trick because I’ve never seen a different problem that uses 
it. However, what justifies extending the limits? 

All three flaws have an justification in the high exponent (100 in this case). 
Raising cos t to a high power means that the result is close to zero when cos t 
drops even slightly below 1. For example, when t = 0.5, its cosine is 0.877 . . . 
and cos100t ≈ 2 10−6. The exponential approximation e−50t2 is roughly · 
3.7	 10−6, which seems inaccurate: The error is almost 100%! But that error · 
is a relative error or fractional error. The absolute error is roughly 2 10−6. it ·
is fine to make large relative errors where the integrand is tiny. In the region 
where the integrand contributes most of the area, which is 

e−t2

0 π/2−π/2

t contributes equal area and the extended limits 

t ≈ 0, steps 1 and 
2 of the approximation are valid. In the other regions, who cares?! 

The same argument justifies the third step: extend­
ing the limits to infinity. It would be foolhardy to ex­
tend the limits in the original integral to give 

∞ 

cos100t dt. 
−∞ 

because each hump of cos100

enclose an infinity of humps. But this objection disappears if you extend the 
limits after making the first two approximations. Those approximations give ∫ π/2 

e−50t2 
dt. 

−π/2 

Because the Gaussian e−50t2 is miniscule at and beyond t = ±π/2, it is safe 
to extend the limits to −∞ . . . ∞. The figure shows the tails of e−t2/2, and 
they are already small. In the faster-decaying function e−50t2 , the tails are 
so miniscule that they would be invisible at any feasible printing resolution. 

I do not want to finish the example with a verification. So try a small 
additional investigation. It arose because of the high accuracy of the approx­
imation when 100 or 10000 is the exponent of the cosine. I wondered how 
well the approximation does in the other extreme case, when the exponent is 
small. To study the accuracy, define 
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f(n) ≡ 
∫ π/2 
−π/2 

cosnt dt. 

The preceding approximations produce the approximation 

f0(n) = 
√ 

2π 
n 
, 

as you can check by trying the exponents 
fractional error is 

n = 100 and n = 10000. The 

f0(n) 
f(n) 

− 1. 

Here are a few values computed by maxima: 

n f0(n)/f(n) − 1 

1 0.2533141373155 
2 
3 
4 
5 
6 
7 
8 
9 

10 
100 

1000 
10000 

0.1283791670955 
0.0854018818374 
0.0638460810704 
0.0509358530746 
0.0423520253928 
0.0362367256182 
0.0316609527730 
0.0281092532666 
0.0252728978367 
0.0025030858398 
0.0002500312109 
0.0000250003124 

Particularly interesting is the small fractional error when n = 1, a case where 
you can confirm maxima’s calculation by hand. The exact integral is ∫ π/2


f(1) = cos1t dt.

−π/2


So f(1) = 2, which compares to the approximation f0(1) = 
√

2π ≈ 2.5. 
Even with an exponent as small as n = 1, which invalidates each step in the 
approximation, the error is only 25%. With n = 2, the error is only 13% and 
from there it is, so to speak, all downhill. 
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5.12 What you have learned 

Take out the big part, and use fractional changes to adjust the answer. Using 
tha procedure keeps calculations hygienic. The fundamental formula is 

(1 + x)n ' 1 + nx, 

or    
fractional fractional
 change  ' n ×  change  .


nin z in z 

When the exponent n times the fractional change x grows too large (becomes 
comparable with 1), you need a more accurate approximation: 

nx(1 + x)n ' e . 
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80 80 

Analogy
6 
When the going gets tough, the tough lower their standards. It is the creed 
of the sloppy, the lazy, and any who want results. This chapter introduces a 
technique, reasoning by analogy, that embodies this maxim. It works well 
with extreme-case reasoning. 

6.1 Tetrahedral bond angle 

What is the bond angle in methane, CH4? The carbon sits at the centroid of 
a regular tetrahedron, and the hydrogens sit at the vertices. Trignometry and 
analytic geometry solve this problem, but let’s try analogy. Three dimensions 
is hard to visualize and figure out, so lower your standards: Look for a simpler 
problem that preserves its essentials. What is essential is not always obvious, 
and you might solve several simpler variants before discovering those features. 

Let’s try the simplest change, going from three dimensions to two dimen­
sions. The two-dimensional version of the problem is to find the bond angle in 
a planar molecule, for example NH3 smashed into a plane. The bond angle is 
one-third of a full circle or 120◦. The center of the bond angle is the centroid 
is the centroid of the object, so its location might be relevant in solving the 
problem. Who knows where a tetrahedron’s centroid is; but the triangle has 
a centroid one-third of the way from one edge to the opposite vertex. 

Here is a table with this data,

where d is the number of dimen­
 d centroid θ 

sions. It’s hard to generalize from triangle 2 1/3 120◦ 
such sparse data, reflected by the tetrahedron 3 ? ? 
question marks in the tetrahedron 
row. Here is where extreme-cases 
reasoning helps. You can get free data by extending the analogy to a yet 
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more extreme problem. If two dimensions are easier than three, then one 
dimension should be easier than two. 

In one dimension, the object 
is a line. The centroid is one-half shape d centroid θ 

of the way between the endpoints. line 1 1/2 180◦ 
The bond angle is 180◦. And the triangle 2 1/3 120◦ 
table now is more complete. The tetrahedron 3 ? ? 
bond angle has several generaliza­
tions to d = 3, depending on what 
pattern underlies it. For example, if the pattern is θ = (240 − 60d)◦, then 
θ(d = 3) = 60◦. Having made a conjecture, it is important to test your 
conjecture. To conjecture and not to test – the great mathematician and 
mathematics teacher George Polya [8] says that to do so is the mark of a sav­
age! So: Is that conjecture reasonable? It’s dubious because, first, the angle 
is less than 90◦. If the molecule were CH6, with the carbon at the center of 
a cube and the hydrogens at the faces of a cube, then the bond angle would 
be exactly 90◦. With only four hydrogens, rather than six, the bond angle 
should be larger than 90◦. So 60◦ seems to be a dubious conjecture. For a 
second reason that it is dubious, the try a more extreme case: four dimen­
sions. Then, according to the (240 − 60d)◦ conjecture, the bond angle would 
be zero, which is nonsense. So the conjecture is dubious on several grounds. 

Let’s make another conjecture. What about θ = 360◦/(d +1)? That con­
jecture fits d = 1 and d = 2. For d = 3 it predicts θ = 90◦. By the reasoning 
that rejected the previous conjecture, this angle is too small. Furthermore, it 
means that for d = 4, the angle drops below 90◦. That’s also not reasonable. 

To help find another 
conjecture, it’s time for a shape d centroid θ cos θ 
new idea. Instead of guess­
ing the bond angle directly, 
guess a function of it that 

line 

triangle 

tetrahedron 

1 
2 
3 

1/2 
1/3 
? 

180◦ 

120◦ 

? 

−1 
−1/2 

? 
makes it easier to guess. 
The bond angle, if we solve 
it honestly, will come from the dot product of two vectors (the vectors from 
a vertex to the centroid of the opposite face). Dot products produce cosines, 
so perhaps cos θ is easier to guess than θ itself. This idea adds a column to 
the table. 

One possible pattern for cos θ is −21−d, which fits the d = 1 and d = 2 
data. For d = 3 it predicts cos θ = −1/4, which means θ > 90◦, an excellent 
result. In the extreme case of d → ∞ it predicts that θ 90◦. Let’s check → 
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that result. The d-dimensional problem has a carbon at the center and d + 1 
hydrogens at the vertices of the object. That bond angle should be more than 
90◦: The problem with 90◦ bonds has 2d hydrogens, each at center of the 2d 
faces of a d-dimensional cube. And d + 1 hydrogens should be more spread 
out than 2d hydrogens. So the −21−d is not reasonable, although it got off 
to a good start. 

To find another conjecture, look at the pattern in the centroid column. It 
is 1/(d + 1). So 1/(d + 1) or 1/d might be a reasonable fit for cos θ. Perhaps 
cos θ = −1/d? That fits the d = 1 and d = 2 data, and predicts cos θ = −1/3 
and θ ≈ 109.47◦. The only problem is that this conjecture also predicts that 
θ → 90◦ as d →∞. So maybe that’s okay? 

Anyway, the more likely conjecture, because it respects the pattern in 
the centroid column, is that cos θ = −1/d. Let’s see if we can check that. 
Yes! But first see if we can check the centroid conjecture, since the cos θ 
one depends on it. And we can check that too. It says that the height is 
1/(d +1) of the way from the base. Hmm, d +1 – that’s how many hydrogens 
there are. And 1, the numerator, is how many hydrogens are not on the base. 
Indeed, the average height of the d + 1 vertices is 1/(d + 1) – which explains 
the centroid location. 

Now, knowing where the centroid is, look at a cross-section of the tetra­
hedron. The cosine of the complement of θ is 

1/(d + 1) 1cos(180◦ − θ) = 
d/(d + 1) 

= 
d
. 

Since cos θ = − cos(180◦ − θ), the result is 

1 cos θ = − . 
d 

The final verifications are elegant arguments, ones that we might not have 
thought of on first try. That’s okay. Here’s what friends who went to the US 
Math Olympiad training session told me they were taught: Find the answer 
by any cheap method that you can find; once you know, or are reasonably 
sure of the answer, you often can then find a more elegant method and never 
mention the original cheap methods. 

I agree with that philosophy, except for one point. It is worthwhile men­
tioning the cheap methods, because, just as they were useful in this problem, 
they will be useful in other problems. 
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6.2 Steiner’s plane problem 
A famous problem is Steiner’s plane problem: Into how many regions do five 
planes divide space? There are lots of answers to this question, some boring. 
If the planes are parallel, for example, they make six regions. If the planes 
are not parallel, the number grows. But the number of regions depends on 
how ‘unparallel’ the planes are. So assume that the planes are in a random 
orientation, to remove the chance of a potential region being wiped out by a 
silly coincidence. 

Five planes are hard to imagine and hard to build. An analogous problem 
is the same question with four planes. That’s still hard, however. So try three 
planes. That’s also hard, so try two planes. That’s easy: four regions. Don’t 
forget the more extreme case of one plane: two regions. And more free data 
comes from the most extreme case of zero planes: one region. So, starting 
with n = 0 planes, the number of regions is: 1, 2, 4, . . . . Are those powers of 
two, and is the next number in the sequence 8? Start with two planes making 
four regions. Place the third plane to cut the other two, so that it splits each 
region into two pieces – making eight regions total. So 8 is indeed the next 
number. Is 16 and then 32 next? That is represented in the following table: 

n 0 1 2 3 4 5 

r 1 2 4 8 16? 32? 

So we have a conjecture, an educated guess, for n = 5. Its conjectural nature 
is reflected in the question marks. But how to test it? We still cannot easily 
visualize four planes, let alone five planes. 

Analogy comes to the rescue again. If fewer planes were easier to solve 
than more planes, fewer dimensions might also help. So let’s study the same 
problem in two dimensions. What is the analogous problem that preserves 
the essentials? It cannot be placing n planes in a plane. Rather, we should 
also reduce the dimensionality of the placed object: Place n lines in a plane, 
in random orientations and positions. How many planar regions does that 
make? Having learnt the lesson of free data, start with n = 0 lines giving 1 
region. One line makes two regions; two lines makes four regions. It looks 
like powers of two again. 

Let’s test it with three lines. Here’s a picture. They make seven regions, 
not eight. So the conjecture fails. Let’s do four lines and count carefully. 
That’s 11 regions, remote from the next power of two, which would have 
been 16. Here are the results for the two-dimensional region: 
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n 0 1 2 3 4 5 

r 1 2 4 7 11 ? 

Let’s combine the two- and three-dimensional data: 

n 0 1 2 3 4 5 

r2 1 2 4 7 11 ? 

r3 1 2 4 8 16? 32? 

Now once again, use extreme cases and get free data. With data for two and 
three dimensions, why not include data for one dimension?! In one dimension 
the problem is, after putting n points on a line, how many regions (line 
segments) do they make? That’s a fencpost problem, so be careful not to be 
off by one. When n = 0, there’s only one segment – the whole infinite line. 
Each dot divides one segment into two, so it increases r by one. So there will 
be r = n + 1 regions. 

n 0 1 2 3 4 5 n 

r1 1 2 3 4 5 6 n + 1 

r2 1 2 4 7 11 ? 

r3 1 2 4 8 16? 32? 

Now we have lots of data! Can you spot a pattern? Look at the connected 
entries, where 4 + 7 = 11: 

n 0 1 2 3 4 5 n 

r1 1 2 3 4 5 6 n + 1 

r2 1 2 4 7 11 ? 

r3 1 2 4 8 16? 32? 

That pattern holds wherever there is data to check it against. For example, 
If that’s true, then in two dimensions when 3 + 4 = 7. Or 4 + 4 = 8. n = 5, 

then r = 16. In three dimensions, when n = 4, there are r = 15 regions (one 
less than the prediction of r = 2n). And with five planes, there will be 26 
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regions. So, that’s our conjecture, which now has lots going for it. Let’s now 
be even more extreme and get one more row of free data: 0 dimensions. In 0 
dimensions, the object is a point, and there’s only one point no matter how 
many -1-dimensional objects subdivide it. So r = 1 always. Then: 

n 0 1 2 3 4 5 n 

r0 1 1 1 1 1 1 1 

r1 1 2 3 4 5 6 n + 1 

r2 1 2 4 7 11 ? 

r3 1 2 4 8 16? 32? 

And the new row, for 0 dimensions, continues the pattern. 
For fun let’s fit polynomials to the data we have – before making the 

conjectured leap. The zeroth row is fit by r = 1, a zeroth-degree polyno­
mial. The first row is fit by r = n + 1, a first-degree polynomial. A natural 
generalization of this pattern is that the second row should be fit by a second-
degree polynomial: a quadratic. A quadratic requires three data points, so 
use n = 0 . . . 2. The polynomial that fits r2 for these points is 

r2(n) = 1 2 + 
2
1 
n + 1.

2
n 

Does this quadratic fit the other, certain data points? For n = 3, it predicts 
r = 7, which is right. For n = 4 it predicts r = 11, which is also right. So we 
can probably trust its prediction for n = 5, which is r = 16 – in agreement 
with the prediction from adding numbers. 

Carrying this system farther, the third row should be fit by a cubic, which 
needs four points for its fit. The cubic, as you can check, that fits the first 
four points is 

r3(n) = 
6
1 
n 3 + . . . 1 

It predicts r(4) = 15 and r(5) = 26, so once again the previous conjectures 
for r(5) get new support. And therefore so does the theory that predicted 
them. 

But why is it true? That problem is left as an exercise for the reader. 
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Operators
7 
This chapter is an extended example of an analogy. In the last chapter, 
the analogy was often between higher- and lower-dimensional versions of a 
problem. Here it is between operators and numbers. 

7.1 Derivative operator 
Here is a differntial equation for the motion of a damped spring, in a suitable 
system of units: 

d2x + 3dx + x = 0,
dt2 dt 

where x is dimensionless position, and t is dimensionless time. Imagine x as 
the amplitude divided by the initial amplitude; and t as the time multiplied 
by the frequency (so it is radians of oscillation). The dx/dt term represents 
the friction, and its plus sign indicates that friction dissipates the system’s 
energy. A useful shorthand for the d/dt is the operator D. It is an operator 
because it operates on an object – here a function – and returns another 
object. Using D, the spring’s equation becomes 

D2 x(t) + 3Dx(t) + x(t) = 0. 

The tricky step is replacing d2x/dt2 by D2x, as follows: 

dx d2x 
D2 x = D(Dx) = D 

dt 
= 
dt2 
. 

The analogy comes in solving the equation. Pretend that D is a number, 
and do to it what you would do with numbers. For example, factor the 
equation. First, factor out the x(t) or x, then factor the polynomial in D: 
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(D2 + 3D + 1)x = (D + 2)(D + 1)x = 0. 

This equation is satisfied if either (D + 1)x = 0 or (D + 2)x = 0. The first 
equation written in normal form, becomes 

(D + 1)x = dx + x = 0,
dt 

or x = e−t (give or take a constant). The second equation becomes 

(D + 2)x = dx + 2x = 0,
dt 

or x = e−2t. So the equation has two solutions: x = e−t or e−2t. 

7.2 Fun with derivatives 

The example above introduced D and its square, D2, the second derivative. 
You can do more with the operator D. You can cube it, take its logarithm, 

Dits reciprocal, and even its exponential. Let’s look at the exponential e . It 
has a power series: 

e D = 1 + D + 1
2
D2 + 1

6
D3 + · · · . 

That’s a new operator. Let’s see what it does by letting it operating on a few 
functions. For example, apply it to x = t: 

(1 + D + D2/2 + )t = t + 1 + 0 = t + 1.· · ·

And to x = t2: 

(1 + D + D2/2 + D3/6 + )t2 = t2 + 2t + 1 + 0 = (t + 1)2 .· · ·

And to x = t3: 

(1 + D + D2/2 + D3/6 + D4/24 + )t3 = t3 + 3t2 + 3t + 1 + 0 = (t + 1)3 .· · ·

DIt seems like, from these simple functions (extreme cases again), that e x(t) = 
x(t + 1). You can show that for any power x = tn, that 

e Dtn = (t + 1)n . 

DSince any function can, pretty much, be written as a power series, and e is 
a linear operator, it acts the same on any function, not just on the powers. 

87 87 



2008-03-06 13:24:47 / rev ebd336097912+

Cite as: Sanjoy Mahajan, course materials for 18.098 / 6.099 Street-Fighting Mathematics, IAP 2008. 
            MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. 
                                            Downloaded on [DD Month YYYY].

∑ 

∑ 

∑ ∑ 

88 88 

Operators 88 

DSo e is the successor operator: It turns the function x(t) into the function 
x(t + 1). 

Now that we know how to represent the successor operator in terms of 
derivatives, let’s give it a name, S, and use that abstraction in finding sums. 

7.3 Summation 

Suppose you have a function f(n) and you want to find the sum f(k). 
Never mind the limits for now. It’s a new function of n, so summation, like 
integration, takes a function and produces another function. It is an operator, 
σ. Let’s figure out how to represent it in terms of familiar operators. To keep 
it all straight, let’s get the limits right. Let’s define it this way: ∑ n

F (n) = ( f)(n) = f(k). 
−∞ 

So f(n) goes into the maw of the summation operator and comes out as F (n). 
Look at SF (n). On the one hand, it is F (n + 1), since that’s what S does. 
On the other hand, S is, by analogy, just a number, so let’s swap it inside 
the definition of F (n): 

n

SF (n) = ( Sf)(n) = f(k + 1). 
−∞ 

The sum on the right is F (n) + f(n + 1), so 

SF (n) − F (n) = f(n + 1). 

Now factor the F (n) out, and replace it by σf : 

((S − 1)σf)(n) = f(n + 1). 

So (S − 1)σ = S, which is an implicit equation for the operator σ in terms of 
S. Now let’s solve it: 

S 1 
σ = 
S − 1

=
1 − S−1 . 

Since S = eD, this becomes 

1 
σ = .

1 − e−D 
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Again, remember that for our purposes D is just a number, so find the power 
series of the function on the right: 

1 1 1

σ = D−1 + 

2 
+ 

12
D − 

720
D3 + · · · .


The coefficients do not have an obvious pattern. But they are the Bernoulli 
numbers. Let’s look at the terms one by one to see what the mean. First is 
D−1, which is the inverse of D. Since D is the derivative operator, its inverse 
is the integral operator. So the first approximation to the sum is the integral 
– what we know from first-year calculus. 

The first correction is 1/2. Are we supposed to add 1/2 to the integral, 
no matter what function we are summing? That interpretation cannot be 
right. And it isn’t. The 1/2 is one piece of an operator sum that is applied 
to a function. Take it in slow motion: 

n 1 
σf(n) = f(k) dk + 

So the first correction is one-half of the final term 
f(n). That is the result we got with this picture from 
Section 4.6. That picture required approximating 
the excess as a bunch of triangles, whereas they have 
a curved edge. The terms after that correct for the 
curvature. 

2
f(n) + · · · . 

0

1

2

1 2 3 4 5 6 7

7.4 Euler sum 

As an example, let’s use this result to improve the estimate for Euler’s famous 
sum 

∞

n−2 . 
1 

The first term in the the operator sum is 1, the result of integrating n−2 from 
1 to ∞. The second term is 1/2, the result of f(1)/2. The third term is 1/6, 
the result of D/12 applied to n−2. So: 

∞ 1 1 
n−2 ≈ 1 + 

2 
+ 

6 
= 1.666 . . . 

1 
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The true value is 1.644 . . ., so our approximation is in error by about 1%. The 
fourth term gives a correction of −1/30. So the four-term approximation is 
1.633 . . ., an excellent approximation using only four terms! 

7.5 Conclusion 

I hope that you’ve enjoyed this extended application of analogy, and more 
generally, this rough-and-ready approach to mathematics. 
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