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5 Taking out the 
big part 

Taking out the big part, the technique of this chapter, is a species of successive 
approximation. First do the most important part of the analysis: the big part. 
Then estimate changes relative to this big part. This hygienic approach keeps 
calculations clean enough to do mentally. Here are a few examples beginning 
with products, powers, and roots, then moving to exponentials and fierce 
integrals. 

5.1 Multiplication 

Suppose you have to estimate 31.5×721. A first estimate comes from rounding 
31.5 to 30 and 721 to 700: 

31.5 × 721 ≈ 30 × 700 = 21000. 

This product is the big part whose estimation is the first step. In the second 
step, estimate the correction. You could estimate the correction directly by 
expanding the product: 

31.5 × 721 = (30 + 1.5) × (700 + 21). 

Expanding produces four terms: 

30 × 700 + 1.5 × 700 + 30 × 21 + 1.5 × 21. 
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Taking out the big part 58 

What a mess! Using fractional or relative changes cleans up the calculation. 
The first step is to estimate the fractional change in each factor: 31.5 is 5% 
more than 30, and 721 is 3% more than 700. So 

31.5 × 721 = 30 × (1 + 0.05) × 700 × (1 + 0.03) . ︸ ︷︷ ︸ ︸ ︷︷ ︸ 
31.5 721 

Reorder the pieces to combine the fractional changes: 

30 × 700 × (1 + 0.05) × (1 + 0.03) .︸ ︷︷ ︸ ︸ ︷︷ ︸ 
big part correction factor 

The big part is already evaluated, so the problem reduces to estimating the 
correction factor. An algebraic method gives 

(1 + 0.05) × (1 + 0.03) = 1 × 1 + 0.05 × 1 + 1 × 0.03 + 0.05 × 0.03 . 
tiny 

Because the last term is the product of two corrections, each small, it is 
smaller than the other terms. Ignoring it gives 

(1 + 0.05) × (1 + 0.03) ≈ 1 + 0.05 + 0.03 = 1

1

1

0.05

0.03

1

.08. 

This algebra has an elegant picture. The unit square rep­
resents the 1×1 product. Enlarge its width by 0.05 to 1+0.05, 
and enlarge its height by 0.03 to 1 + 0.03. The new rectan­
gle has area (1 + 0.05) × (1 + 0.03), which is the sought-after 
product. The four pieces of the figure correspond to the four 
terms in the expansion of (1 + 0.05) × (1 + 0.03). Relative to 
the unit square, the new rectangle has a thin rectangle on the 
right that has area 0.05 and a thin rectangle on top that has 
area 0.03. There’s also an adjustment of 0.05 × 0.03 for the gray rectangle. 
It is tiny compared to the long rectangles, so neglect it. Then the area is 
roughly 1 + 0.05 + 0.03, which is a geometric proof that the correction factor 
is roughly 

1 + 0.05 + 0.03 = 1.08. 

It represents an 8% increase. The uncorrected product is 21000, and 8% of it 
is 1680, so 

31.5 × 721 = 21000 × correction factor ≈ 21000 + 1680 = 22680. 
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5.1 Multiplication 59 

The true value is 22711.5, so the estimate is low by 0.15%, which is the area 
of the tiny, gray rectangle. 

This numerical example illustrates a general pattern. Suppose that you 
can easily find the product xy, as in the preceding example with x = 30 and 
y = 700, and you want a nearby product (x + ∆x)(y + ∆y), where ∆x � x 
and ∆y � y. Call ∆(xy) the change in the product xy due to the changes in 
x and y: 

(x + ∆x)(y + ∆y) = xy + ∆(xy). 

To find the new product, you could find ∆(xy) (since xy is easy). But do not 
expand the product directly: 

(x + ∆x)(y + ∆y) = xy + x∆y + y∆x + xy. 

Instead, extract the big part of the product and study the correction factor. 
The big part is xy, so extract xy by extracting x from the first factor and y 
from the second factor. The correction factor that remains is ( )( )

∆x ∆y ∆x ∆y ∆x ∆y1 + 1 + = 1 + + + . 
x y x y x y 

frac. change in xy 

The ∆x/x is the fractional change in x. The ∆y/y is the fractional change in 
y. And the (∆x/x)(∆y/y), the product of two tiny factors, is tiny compared 
to fractional changes containing one tiny factor. So, for small changes:  

fractional
 change  ∆x + ∆y


in xy 
' 
x y
   
fractional fractional


=  change  +  change  .

in x in y


In other words, for small changes: 

The fractional change in a product is the sum of fractional changes in 
its factors. 

The simplicity of this rule means that fractional changes simplify computa­
tions. 
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Taking out the big part 60 

5.2 Squares 

Squares are a particular kind of product, so we could approxi-

A = x2

x

2. Now 
. 

mate squares using the preceding algebra or pictures. Instead I 
derive the picture from scratch, to practice with pictures and to 
introduce the notion of low-entropy expressions. Let A be the 
area of a square and x be the length of its side, so A = x
imagine increasing x to x + ∆x, producing an area (x + ∆x)2

This analysis is useful if you can choose x to be a number whose 
square you know; then ∆x is the change to get to the number 
whose square you want to compute. For example, if you want to 
compute 9.22, set x = 9 and ∆x = 0.2 and find how much the area increases. 
The algebraic approach is to expand 

(x + ∆x)2 = x 2 + 2x∆x + (∆x)2 . 

An alternative approach is to elaborate the picture. 
The new area is shaded and has three parts. As long as 

A = x2

x∆x

x∆x

(∆x)2

x ∆x

∆x � x, the tiny corner square is small compared to the two 
rectangles. So the change in area is 

x∆x + x∆x = 2x∆x.∆A ≈ ︸︷︷︸ ︸︷︷︸ 
top rect. right rect. 

But this result is difficult to remember because it is has high-
entropy [6]. The combination of x and ∆x seem arbitrary. If 
∆A had turned out to be x2 or (∆x)2, it would also have seemed reasonable. 
A high-entropy form has variables scattered all over, in a seemingly uncon­
strained arrangement. A low-entropy form groups together relevant variables 
to make a form that is easy to understand and therefore to remember. 

To turn ∆A = 2x∆x into low-entropy form, divide by A = x2. This 
choice has two reasons. The first reason is the theme of this chapter: take 
out the big part. You know how to square x, so A or x2 is the big part. 
To take it out, divide the left side ∆A by A and the right side 2x∆x by x2. 
The second reason comes the method of Chapter 1: dimensions. There are 
many dimensions in the world, so requiring an expression to be dimensionless 
eliminates this freedom and reduces the entropy: 
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5.2 Squares 61 

Expressions with dimensions have higher entropy than expressions with­
out dimensions. 

The high-entropy result has dimensions of area; to make it dimensionless, 
divide both sides by an area. For the left side ∆A, the natural, realted 
quantity is the area A. For the right side 2x∆x, the natural, related quantity 
is the area x2. So two reasons – taking out the big part and dimensions – 
suggest dividing by A = x2. A method with two justifications is probably 
sound, and here is the result: 

∆A 2x∆x ∆x 
2A 

≈ 
x

= 2
x
. 

Each side has a simple interpretation. The left side, ∆A/A, is the fractional 
change in area. The right side contains ∆x/x, which is the fractional change 
in side length. So    

fractional fractional
 change  ≈ 2 ×  change  .

in x2 in x


This statement of the result is easier to understand than the high-entropy 
form. It says that fractional changes produce fractional changes. The only 
seemingly arbitrary datum to remember is the factor of 2, but it too will 
make sense after studying cubes and square roots. 

Meanwhile you might be tempted into guessing that, because A = x2, 
the fractional changes follow the same pattern:    2fractional fractional  change  ≈  change  . 

in A in x 

That reasonable conjecture is wrong! Try a numerical example. Imagine a 
10% increase in x, from 1 to 1.1. Then x2 increases to roughly 1.2, a fractional 
increase of 0.2. If the candidate formula above were correct, the fractional 
increase would be only 0.01. 

Let’s finish the study of squares with 9.22, the numerical example men­
tioned before. Its big part is 92 = 81. Going from 9 to 9.2 is a fractional 
increase of 2/90, so 9.22 should increase by 2 × 2/90 = 4/90: 

9.22 
( 

4 
) 

≈ 81 × 1 + 
90 
≈ 81 + 3.6 = 84.6. 
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Taking out the big part 62 

The exact answer is 84.64, a mere 0.05% higher. 

5.3 Fuel efficiency 

Section 2.7 used dimensional analysis and an experiment of dropping paper 
cones to show that drag force is proportional to v2, where v is the speed 
that an object moves through a fluid. This result applied in the limit of 
high Reynolds number, which is the case for almost all flows in our everyday 
experience. Highway driving is at a roughly steady speed, so gasoline is 
burned in fighting drag rather than in lossy, stop-and-go changes of speed. 
The energy required for a car to travel a distance d at speed v is then 

E = Fd ∝ v 2d, 

where F is the drag force. In the 1970’s, oil became expensive in Western 
countries for reasons that were widely misunderstood and often misexplained 
(maybe intentionally). For a thorough analysis, see [7]. Whatever the causes, 
the results were hard to avoid. The United States reduced oil consumption by 
mandating a speed limit of 55 mph on highways. For the sake of this problem, 
imagine that cars drove at 65 mph before the speed limit was imposed. By 
what fraction does the gasoline consumption fall due to the change in speed 
from 65 to 55 mph? Pretend that the speed limit does not affect how far 
people drive. It may be a dubious assumption, since people regulate their 
commuting by total time rather than distance, but that twist can be the 
subject of a subsequent analysis (do the big part first). 

Fractional changes keep the analysis hygienic. The drag force and the 
energy consumption are proportional to v2d, and the distance d is, by as­
sumption, constant. So E ∝ v2 and    

fractional fractional
 change  = 2 ×  change  .

in E in v


A drop in v from 65 to 55 mph is a drop of roughly 15% so the energy 
consumption drops by 2 × 15% = 30%. It is a large reduction in automotive 
oil consumption. Considering the large fraction of oil consumed by car travel, 
this 30% drop in highway oil consumption produces a substantial reduction 
in total oil consumption. 
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5.4 Third powers 

The next example extends the analysis to the volume of a cube with side 
length x. The usual question recurs: If x increases by ∆x, what happens to 
the volume V ? If you do not use fractional changes, you can try to guess 
what happens by analogy with the change in area. Perhaps 

∆V ∼ x 2∆x 

or maybe 

∆V ∼ x(∆x)2? 

Both choices have a volume on each sides, so their dimensions are correct, 
and dimensions do not favor either choice. In short, it’s a pain to remember 
how to distribute the three powers of length on the right side. Should the x 
get all of them, two of them, one of them, or none? 

Instead of trying to remember the high-entropy form, work it out from 
scratch, rewrite it as a fractional change, and see how simple and low-entropy 
it becomes. The full ∆V is 

∆V = (x + ∆x)3 − x 3 = 3x 2∆x + 3x(∆x)2 + (∆x)3 . 

The terms with the higher powers of ∆x are the smallest, so ignore them. 
This approximation leaves 

∆V ≈ 3x 2∆x. 

The fractional change is 

∆V 3x2∆x ∆x 
3V 

≈ 
x

= 3 
x
. 

This result has the same form as the fractional change in area but with a 
factor of 3. In words:    

fractional fractional
 change  ≈ 3 ×  change  .

in x3 in x


The factor of 3 comes from the exponent of x in V = x3, just as the 2 came 
from the exponent of x in A = x2. Let’s look at two examples. 

For the first example, estimate 6.33. The big part is 63 = 216. Since 0.3 
is 5% larger than 6, its cube is 3 × 5% = 15% larger than 63: 
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Taking out the big part 64 

6.33 ≈ 216 × (1 + 0.15). 

To calculate 216 × 0.15, first calculate the big part 200 × 0.15, which is 30. 
Then increase the result by 8% of 30, because 216 is 8% larger than 200. 
Since 8% of 30 is 2.4: 

216 × 0.15 = 30 + 2.4 = 32.4 

Then 

6.33 ≈ 216 + 32.4 = 248.4. 

The true value is 250.047, which is only 0.7% larger. 
The second example comes from the physics of wind energy. The power 

produced by a wind turbine is related to the force exerted by the wind, which 
is (like the drag force) proportional to v2. Since power is force times velocity, 
it should be proportional to v3. Therefore a 10% increase in wind speed 
increases generated power by 30%! The hunt for fast winds is one reson that 
wind turbines are placed high in the atmosphere (for example, on cliffs) or at 
sea, where winds are faster than near land surfaces. 

5.5 Reciprocals 

The preceding examples used positive exponents. To explore fractional changes 
in new territory, try a negative exponent. This example is about the simplest 
one: reciprocals, where n = −1. Suppose that you want to estimate 1/13 
mentally. The big part is 1/10 because 10 is a nearby factor of 10, which 
means its reciprocal is easy. So 1/13 ≈ 0.1. To get a more accurate approxi­
mation, take out the big part 1/10 and approximate the correction factor: 

1 1 1 
13 

= 
10 
× 

1 + 0.3
. 

The correction factor is close to 1, reflecting that most of the result is in the 
big part 1/10. The correction factor has the form (1+x)−1, where x = 0.3. It 
is therefore approximately 1 − x as I hope the following example and picture 
will convince you. If a book is discounted 10% and shipping costs add 10% of 
the discounted price, the final total is almost exactly the original price. Try 
an example with a $20 book. It gets reduced to $18 but shipping adds $1.80, 
for a total of $19.80. Except for the tiny error of $0.20, a 10% increase and 
a 10% decrease cancel each other. In general 
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5.5 Reciprocals 65 

(1 − x) × (1 + x) ≈ 1. ︸ ︷︷ ︸ ︸ ︷︷ ︸ 
decrease increase 

The picture confirms the algebra. Relative to the original unit 

1
+

x

1− x

gain

lo
ss

2 is 

square, the new (1 − x) × (1+ x) rectangle loses a rectangle on the 
right with area x and gains a rectangle on the top, also with area 
x. So the gain cancels the loss, keeping the area at 1. The error in 
this tally is the tiny square with area x2; however, as long as x
small, do not worry. That pictorial approximation leads to 

1 
1 + x 

≈ 1 − x. 

In words,    
fractional fractional  change  = −1 ×  change  . 

in z−1 in z 

If z increases by 30%, from 1 to 1.3, then z−1 decreseas by 30%, from 1 
to 0.7. So 1/1.3 = 0.7 and 

1 1 1 
13 

= 
10 
× 

1.3 
≈ 0.1 × 0.7 = 0.07. 

The error in the approximation comes from the neglected x2 term in the 
reciprocal (1 + x)−1. To reduce the error, reduce x by making the big part a 
close approximation. Massage the original fraction to make the denominator 
close to 1/100: 

1 8 8 8 1 
13 
× 

8 
= 

104 
= 

100 
× 

1.04
. 

The big part 8/100 = 0.08 is still easy, and the correction factor 1.04 has a 
smaller x: only 0.04. A 4% increase in a denominator produces a 4% decrease 
in the quantity itself, so 

1 
13 
≈ 0.08 − 4%, 

where the −4% means ‘subtract 4% of the previous quantity’. To find the 
4%, mentally rewrite 0.08 as 0.0800. Since 4% of 800 is 32, reduce the 0.08 
by 0.0032: 

1 
13 
≈ 0.0800 − 0.0032 = 0.0768. 
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Taking out the big part 66 

To make an even more accurate value, multiply 1/13 by 77/77 to get 77/1001. 
The big part is 0.077 and the correction factor is a reduction by 0.1%, 
which is 0.00077. The result is 0.076923. For comparison, the true value 
is .0769230769 . . .. 

The second application follows up the reduction in gasoline consumption 
due to a 55-mph speed limit, analyzed in Section 5.3. How much does the 
reduction in energy consumption increase fuel efficiency? Fuel efficiency is 
inversely proportional to energy consumption, so the −30% change in energy 
consumption produces a +30% change in fuel efficiency. It is often measured 
in miles per gallon, and a typical value for highway driving may be 35 mph. 
The 55 mph speed limit would increase it to roughly 45 mph, a larger increase 
than the legally mandated engineering increases over the last few decades. 

5.6 Square roots 

After positive and negative integer exponents, the next frontier is fractional 
exponents. The most common example is square roots, so let’s apply these 
methods to 

√
10. First take out the big part from 

√
10. The big part is from 

the number whose square root is easy, which is 9. So factor out 
√

9: 

√
10 = 

√
9 × 1 + 

9
1 
. 

The problem reduces to estimating 
√

1 + x with x = 1/

1

1

x

2

x/2

1

9 in 
this case. Reversing the analysis for squaring in Section 5.2 
produces a recipe for square roots. For squaring, the problem 
was to find the area given the side length. Here the problem 
is to find the side length 

√
1 + x given that the area is 1 + 

x. Relative to the unit square, the three shaded areas that 
make an L contribute the extra area x. The width of the 
vertical rectangle, or the height of the horizontal rectangle, is 
the change in side length. To find those dimensions, study the 
areas. Most of the contribution comes from the two dark rectangles, so ignore 
the tiny gray square. In that approximation, each rectangle contributes an 
area x/2. The rectangles measure 1× ∆x or ∆x × 1, so their small dimension 
is roughly ∆x = x/2. Thus the side length of the enclosing square is 1 + x/2. 
This result produces the first square-root approximation: 

√
1 + x ≈ 1 + x.

2 
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5.6 Square roots 67 

The right side represents a fractional increase of x/2, so    
fractional 1 fractional
 change   change  ,


in 
√
z 

' 
2 
× 

in z


or in words 

A fractional change in z produces one-half the fractional change in 
√
z. 

This result is the missing piece in estimating 
√

10. The missing step was √
1 + x with x = 1/9. Using the approximation, 

1 11 + 
9 
≈ 1 + 

18
. 

So increase the big part (which is 3) by 1/18: 
√

10 ≈ 3 × 1 + 1 = 31 = 3.166 . . . . 
18 6 

The true value is 3.1622 . . .; the estimate is accurate to 0.14%, a reasonable 
trade for three lines of work. 

A few more lines and a refined picture increase the accuracy. The previous 
analysis ignored the tiny gray square. But now we know enough about the 
diagram to account for it, or at least to account for most of it. Neglecting 
the tiny square produced a square of side 1 + x/2, which has area 1 + x plus 
the area of the tiny square. The tiny square is x/2 on each side so its area is 
x2/4. The error in the first approximation 

√
1 + x = 1 + x/2 

1

1 + x/2

arises from this 
extra area. 

To fix the approximation, shrink the big square slightly, just 
enough to remove an L-shaped shaded piece with area x2/4. The 
dimensions of the L cannot be determined exactly – or else we 
could take square roots exactly – but it is solvable almost exactly 
using the knowledge from the earlier approximations. The analy­
sis is by successive approximations. The L has two arms, each 
almost a thin rectangle that is as long or tall as the whole square, 
which means a length of 1 + x/2. The ‘almost’ comes from ig­
noring the miniscule corner square where the two arms overlap. 
In this approximation, each arm has area x2/8 in order that the L have area 
x2/4. Since each sliver has length 1 + x/2, the widths are 
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Taking out the big part 68 

area x2/8width = = 
length 1 + x/2

. 

The 1 + x/2 in the denominator is a fractional increase in the denominator 
of x/2, so it is a fractional decrease of x/2 in the numerator: 

x x x x x= 
1 + 

2/

x/

8
2 
≈ 

8 

2 ( 
1 − 

2 

) 

8 

2 
− 

16

3 
. 

This result is the thin width of the either rectangle arm. So shrink each side 
of the old square by x2/8 − x3/16, giving the next approximation to 

√
1 + x: 

x x√
1 + x = 1 + x 

8 

2 
+ 

3 

2 
− 

16
. 

The cubic term x3/16 is a bonus. We tried to compute the approximation 
after 1 + x/2, which presumably would give the coefficient of the x2/8 term, 
yet we get the x3 coefficient for free! 

For mental calculation, I often neglect the cubic term. And, consistent 
with taking out the big part, I represent the x2/8 as an adjustment on the 
next biggest part, which is the x/2 term: 

x√
1 + x = 1 + x 

( 
1 − 

) 
.

2 4 

This formula gives the next approximation for 
√

10. The zeroth approxima­
tion is 

√
10 = 3, which is the big part. The next approximation includes the 

x/2 term to give 

√
10 = 3 + 1

6
. 

The correction is 1/6. With x = 1/9, the correction needs reducing by x/4 = 
1/36. Because 1/36 of 1/6 is 1/216, the next approximation is 

1 1√
10 = 3 + 

6 
− 

216
. 

For 1/216 use fractional changes to approximate it: 216 is 8% larger than 
200, so 

1 1 
216 
≈ 

200
−8%. 

0.0050 

The percentage is not hard: 8% × 50 = 4, so 

1 
216 
≈ 0︸.0050︷︷ ︸ −0.0004 = 0.0046. 

68 68 



√

√

69 69 

5.7 In general 69 

Thus 

√
10 ≈ 3 + 0.1666 − 0.0046 ≈ 3.1626. 

The true value is 3.162277 . . ., so the estimate is accurate to 0.01%. 
Estimating square roots often benefits from a trick to speed convergence 

of the series. To see the need for the trick, try to estimate 
√

2 using the 
preceding approximations. The big part is 

√
1, which is no help. What 

remains is the whole problem: 
√

1 + x with x = 1. Its first approximation is 

√
2 ≈ 1 + x 

2 
=

2
3 
. 

Compared to the true value 1.414 . . . this approximation is large by 6%. The 
next approximation includes the x2/8 term: 

x2 11√
2 ≈ 1 + x 

2 
− 

8 
= 

8 
= 1.375, 

which is small by roughly 3%. The convergence is slow because x = 1, so 
successive terms do not shrink much despite the growing powers of x. If only 
I could shrink x! The following trick serves this purpose: 

√
2 = √4/3 

.
2/3

Each square root has the form 
√

1 + x where x = ±1/3. Retain up to the 
x/2 term: 

√
2 = √4/3 1 + 1/6 7 = 1.4.

2/3 
≈ 

1 − 1/6
=

5 

This quick approximation is low by only 1%! With the x2/8 correction for 
each square root, the approximation becomes 

√
2 ≈ 83/59 = 1.406 . . ., which 

is low by 0.5%. The extra effort to include the quadratic term is hardly worth 
only a factor of 2 in accuracy. 

5.7 In general 
Look at the patterns for fractional changes. Here they are, in the order that 
we studied them: 
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   
fractional fractional
 change  ' 2 ×  change  ,


in z2 in z
   
fractional fractional
 change  ' 3 ×  change  ,


in z3 in z
   
fractional fractional  change  ' −1 ×  change  , 

in z−1 in z    
fractional fractional
 change  ' 1/2 ×  change  .


in z1/2 in z 

The general pattern is    
fractional fractional
 change  ' n ×  change  .


nin z in z 

Before trying to prove it, check an easy case that was not part of the data used 
to make the generalization: n = 1. The fractional changes in z and z1 are 
identical, so the pattern works. You can also check it when n is a nonnegative 

ninteger. In that case, z is a product of n factors of z. The product principle 
from Section 5.1 is that the fractional change in a product is the sum of 
fractional changes in its factors. With n identical factors, the sum is indeed 
n times the fractional change in each factor. 

The shortest proof for general n is by logarithmic differentiation. As the 
name says: First take the logarithm and then differentiate. The logarithm of 

nf = z is n log z. Differentiating, or rather taking the differential, gives 

df dz = n . 
f z 

That result is exact for infinitesimal changes (dz = 0). For finite changes, use 
∆z instead of dz and turn the equals sign into an ≈: 

∆f ∆z 
,

f 
≈ n
z 

which is the symbolic expression of the general pattern: 

The fractional change in zn is n times the fractional change in z. 
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5.8 Seasons 

An application of these results is to evaluate a common explanation for sea­
sons. It is often said that, because the earth is closer to the sun in the summer 
than in the winter, summers are warmer than winters. The earth–sun dis­
tance does vary throughout the year because the earth orbits in an ellipse 
rather than a circle. As the distance varies, so does the solar flux, which is 
the amount of solar energy per unit area hitting the surface. The flux radi­
ates back to space as blackbody radiation, the subject of numerous physics 
textbooks. The blackbody flux is related to the surface temperature. So 
the changing the earth–sun distance changes the earth’s surface temperature. 

l

l

rmax rmin

ε = 0.5

θ = 0◦

135◦

180◦

The diagram shows an orbit with 

How large is the effect and is it enough to account for the seasons? 
The cleanest analysis is, not surprisingly, via


fractional changes starting with the fractional

change in earth–sun distance. In polar coordi­

nates, the equation of an ellipse is


l 
r = ,

1 + ε cos θ 

where ε is the eccentricity, θ is the polar angle, 
and l is the semi-latus rectum (proportional to 
the angular momentum of the orbit). 
eccentricity of 0.5, much exaggerated compared to the earth’s orbit in order 
to show the elliptical nature of the orbit. The distance varies from rmin = 
l/(1 + ε) to rmax = l/(1 − ε). Going from rmin = l/(1 + ε) to l is a fractional 
increase of roughly ε. Going from l to rmax = l/(1 − ε) is another fractional 
increase of ε, so the earth–sun distance varies by roughly 2ε. The earth’s 
orbit has ε = 0.016 or 1.6%, meaning that the distance varies by 3.2%. As a 
check on that number, here is the relevant orbital data: 

rmin = 1.471 108 km,· 
rmax = 1.521 108 km.· 

These distances differ by roughly 3.2%. 
The second step is to estimate the fractional change in flux produced 

by this fractional change in distance. The total solar power P spreads over 
a giant sphere with surface area A = 4πd2. The power per area, which is 
flux, is P/A ∝ d−2. Because of the −2 exponent, a distance increase of 3.2% 
produces a flux decrease of 6.4%. 
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The third step is to estimate the fractional change in temperature pro­
duced by this fractional change in incoming flux. The outgoing flux is black­
body radiation, and it equals the incoming flux. So the outgoing flux also 
changes by 6.4%. Statistical mechanics – the Stefan–Boltzmann law – says 
that blackbody flux F is proportional to T 4, where T is the surface temper­
ature: 

4F = σT . 

The σ is the Stefan–Boltzmann constant, a ghastly combination of the quan­
tum of action ~, the speed of light c, Boltzmann’s constant kB, and π2/60. 
But its composition is not relevant, because we are interested only in the 
fractional change in T . The freedom comes from using fractional changes, 
and is one of the most important reasons to use them. Since T ∝ F 1/4, if 
flux changes by 6.4%, then T changes by 6.4%/4 or 1.6%. To find the actual 
change in temperature, multiply this percentage by the surface temperature 
T . Do not fall into the trap of thinking that, in winter anyway, the tempera­
ture is often 0 ◦C, so the change ∆T is also 0 ◦C! The blackbody flux F ∝ T 4 

depends on T being an absolute temperature: measured relative to absolute 
zero. On one such scale, the Kelvin scale, T = 300 K so a 1.6% variation is 
about 5 K. The reference points of the Celsius and Kelvin scales are different, 
but their degrees are the same size, so a 5 K difference is also a 5 ◦C differ­
ence. This change is too small to account for the difference between summer 
and winter, making the proposed explanation for seasons implausible. The 
explanation has other flaws, such as not explaining how Australia and Europe 
have opposite seasons despite being almost exactly equidistant from the sun. 
If orbital distance changes do not produce seasons, what does? 

5.9 Exponentials 

The preceding examples investigated the approximation 

(1 + x)n ' 1 + nx 

where the exponent n was a positive integer, negative integer, and even a 
fraction. The examples used moderate exponents: 1/2 for the square roots, 
−1 for reciprocals, and −2 and 1/4 for the seasons. Now push n to an 
extreme, but skillfully. If you simply make n huge, then you end up evaluating 
quantities like 1.1800, which is not instructive. Instead, let n grow but shrink 
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x in parallel to keep nx fixed. An intuitive value for nx is 1, and these 
examples keep nx = 1 while increasing n: 

1.110 = 2.59374 . . . , 
1.01100 = 2.70481 . . . , 

1.0011000 = 2.71692 . . . . 

In each case, nx = 1 so the usual approximation is 

(1 + x)n = 2 ≈ 1 + nx = 2, 

which is significantly wrong. The problem lies in nx growing too large. In 
the examples with moderate n, the product nx was much smaller than 1. So 
new mathematics happens when nx grows beyond that limited range. 

To explain what happens, guess features of the solution and then find 
an explanation related to those features. The sequence starting with 1.110 

seems to approach e = 2.718 . . ., the base of the natural logarithms. That 
limit suggests that we study not (1 + x)n but rather its logarithm: 

ln(1 + x)n = n ln(1 + x). 

As long as x itself is not large (nx can still be large), then ln(1 + x) ≈ 1 + x. 
So n ln(1 + x) ≈ nx and 

nx(1 + x)n ≈ e . 

When nx � 1, then enx approximates to 1+nx, which reproduces the familiar 
nxapproximation 1+nx. When nx grows large, the approximation e = 1+nx 

nxfails, and you have to use e itself. 

5.10 Extreme cases 

The general nth power (1 + x)n has several extreme cases depending on n, 
x, and nx. One limit is taking n 0. Then (1 + x)n turns into 1 + n ln x,→
whose proof is left as an exercise for you. The other two limits have been the 

nxsubject of the preceding analyses. When x 0, the limit is e . If nx 0→ →
in additon x 0, then enx limits to 1 + nx, which is the result from the first →
examples in this chapter. Here is a pictoral summary: 
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(1 + x)nenx

1 + n ln(1 + x)

1 + nx
n
→

0

0← x

n
x
→

0

n (log scale)

x (log scale)

nx = 1

Here are a few numerical examples of these limits: 

limit x n (1 + x)n ≈ 

n 0 1 0.1 1 + 0.1 ln 2 
x 

→ 

0 0.1 30 e3 → 

x, nx 0 0.1 3 1.3→ 

These limits come in handy in the next problem. 

5.11 Daunting integral 
As a physics undergraduate, I spent many late nights in the department 
library eating pizza while doing problem sets. The graduate students, in 
the same boat for their courses, would share their favorite mathematics and 
physics problems, which included the following from the former USSR. The 
Landau institute for theoretical physics required an entrance exam of ‘math­
ematical preliminaries’. One preliminary was to evaluate ∫ π/2 

cos100t dt 
−π/2 

to within 5% in less than 5 minutes, without a calculator or computer! That 
cos100t looks frightening. Normal techniques for trigonometric functions do 
not help. For example, this identity is useful when integrating cos2t: 
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cos2t = 1(cos 2t − 1).
2

Here it would produce ( )50 

cos100t = cos 2t − 1 
,

2 

which becomes a trigonometric monster after expanding the 50th power. The 
answer is to approximate; after all, we need an answer accurate only to 5%. 
An approximation for cos t is cos t = 1 − t2/2. So ( 2 )100 

cos100t ' 1 − 
t

2 
, 

which looks like (1 + x)n with x = −t2/2 and n = 100. In the range t ≈ 0 
where the approximation for cosine is valid, it is the extreme case x 0 of 
(1 + x)n, which is enx. So 

→ 

( 2 )100


cos100t = 1 − 
t

cos t

cos5 t

2 ,

= e−50t2 
.


2 

The integrand has the general form e−αt

which is the Gaussian analyzed in Section 2.2 
and Section 3.4. This simple conclusion, that 
a high power of a cosine becomes a Gauss­
ian, seems hard to believe, but the computer-
generated plots of cosnt for n = 1 . . . 5 show 
the cosine curve turning into the Gaussian bell shape as n increases. A plot 
is not a proof, but it increases confidence in a surprising result. 

The argument has a few flaws but do not concern yourself with them now. 
Follow Bob Marley: Don’t worry, be happy. In other words, approximate first 
and (maybe) ask questions later after getting an answer. To promote this 
sang froid or courage, I practice what I preach and defer the analysis of the 
flaws. If the limits were infinite, the integral would be 

∞ 

e−αt
2 
dt, 

−∞ 

which is doable. Alas, our limits are −π/2 to π/2 rather than from −∞
to ∞. Do not worry; just extend the limits and justify it at the end. The 
infinite-range integral of the Gaussian is 
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Taking out the big part 76 

∞ 
2 π 

e−αt dt = . 
α−∞ 

For cos100t, the parameter is α = 50 so the original integral becomes ∫ π/2 ∫ ∞ 

e−50t2 
√ 
π 

−π/2 
cos100t dt ≈ 

−∞ 
dt = 

50
. 

Since 50 ≈ 16π, the integral is 1/16 = 0.25. The exact answer is ∫ π/2 ( ) 

−π/2 
cosnt dt = 2−n 

n/

n 
2 
π, 

whose proof I leave as a fun exercise for you. For n = 100, the result is 

12611418068195524166851562157π = 0.25003696348037 . . . 
158456325028528675187087900672 

The maxima program, which computed this exact rational-fraction multiple 
of π, is free software originally written at MIT as the Macsyma project. Using 
a recent laptop (circa 2006) with an Intel 1.83 GHz Core Duo CPU, maxima 
required roughly 20 milliseconds to compute the exact result. Our estimate 
of 1/4 used a method that requires less than, say, thirty seconds of human 
time (with practice), and it is accurate to almost 0.01%. Not a bad showing 
for wetware. 

In order to estimate accurately the computation times for such integrals, 
I tried a higher exponent: ∫ π/2 

cos10000t dt 
−π/2 

In 0.26 seconds, maxima returned a gigantic rational-fractional multiple of π. 
Converting it to a floating-point number gave 0.025065 . . ., which is almost 
exactly one-tenth of the previous answer. That rescaling makes sense: In­
creasing the exponent by a factor of 100 increases the denominator in the 
integral by 

√
100 = 10. 

Now look at the promised flaws in the argument. Here are the steps in 
slow motion, along with their defects: 

1.	 Approximate cos t by 1 − t2/2. This approximation is valid as long as 
t ≈ 0. However, the integral ranges from t = −π/2 to t = π/2, taking t 
beyond the requirement t ≈ 0. 
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2.	 Approximate (1 − t2/2)n as e−nt
2/2. This approximation is valid when 

t2/2 ≈ 0. Again, however, t ranges beyond that limited domain. 

3.	 Replace the difficult limits −π/2 . . . π/2 with the easier ones −∞ . . . ∞. 
The infinite limits permit the polar-coordinates trick of Section 2.2 – 
which I call a trick because I’ve never seen a different problem that uses 
it. However, what justifies extending the limits? 

All three flaws have an justification in the high exponent (100 in this case). 
Raising cos t to a high power means that the result is close to zero when cos t 
drops even slightly below 1. For example, when t = 0.5, its cosine is 0.877 . . . 
and cos100t ≈ 2 10−6. The exponential approximation e−50t2 is roughly · 
3.7	 10−6, which seems inaccurate: The error is almost 100%! But that error · 
is a relative error or fractional error. The absolute error is roughly 2 10−6. it ·
is fine to make large relative errors where the integrand is tiny. In the region 
where the integrand contributes most of the area, which is 

e−t2

0 π/2−π/2

t contributes equal area and the extended limits 

t ≈ 0, steps 1 and 
2 of the approximation are valid. In the other regions, who cares?! 

The same argument justifies the third step: extend­
ing the limits to infinity. It would be foolhardy to ex­
tend the limits in the original integral to give 

∞ 

cos100t dt. 
−∞ 

because each hump of cos100

enclose an infinity of humps. But this objection disappears if you extend the 
limits after making the first two approximations. Those approximations give ∫ π/2 

e−50t2 
dt. 

−π/2 

Because the Gaussian e−50t2 is miniscule at and beyond t = ±π/2, it is safe 
to extend the limits to −∞ . . . ∞. The figure shows the tails of e−t2/2, and 
they are already small. In the faster-decaying function e−50t2 , the tails are 
so miniscule that they would be invisible at any feasible printing resolution. 

I do not want to finish the example with a verification. So try a small 
additional investigation. It arose because of the high accuracy of the approx­
imation when 100 or 10000 is the exponent of the cosine. I wondered how 
well the approximation does in the other extreme case, when the exponent is 
small. To study the accuracy, define 
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f(n) ≡ 
∫ π/2 
−π/2 

cosnt dt. 

The preceding approximations produce the approximation 

f0(n) = 
√ 

2π 
n 
, 

as you can check by trying the exponents 
fractional error is 

n = 100 and n = 10000. The 

f0(n) 
f(n) 

− 1. 

Here are a few values computed by maxima: 

n f0(n)/f(n) − 1 

1 0.2533141373155 
2 
3 
4 
5 
6 
7 
8 
9 

10 
100 

1000 
10000 

0.1283791670955 
0.0854018818374 
0.0638460810704 
0.0509358530746 
0.0423520253928 
0.0362367256182 
0.0316609527730 
0.0281092532666 
0.0252728978367 
0.0025030858398 
0.0002500312109 
0.0000250003124 

Particularly interesting is the small fractional error when n = 1, a case where 
you can confirm maxima’s calculation by hand. The exact integral is ∫ π/2


f(1) = cos1t dt.

−π/2


So f(1) = 2, which compares to the approximation f0(1) = 
√

2π ≈ 2.5. 
Even with an exponent as small as n = 1, which invalidates each step in the 
approximation, the error is only 25%. With n = 2, the error is only 13% and 
from there it is, so to speak, all downhill. 
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5.12 What you have learned 

Take out the big part, and use fractional changes to adjust the answer. Using 
tha procedure keeps calculations hygienic. The fundamental formula is 

(1 + x)n ' 1 + nx, 

or    
fractional fractional
 change  ' n ×  change  .


nin z in z 

When the exponent n times the fractional change x grows too large (becomes 
comparable with 1), you need a more accurate approximation: 

nx(1 + x)n ' e . 
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