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Extreme cases
2 
The next item for your toolbox is the method of extreme cases. You can 
use it to check results and even to guess them, as the following examples 
illustrate. 

2.1 Fencepost errors 

Fencepost errors are the most common programming mistake. An index loops 
over one too many or too few items, or an array is allocated one too few 
memory locations – leading to a buffer overrun and insecure programs. Since 
programs are a form of mathematics, fencepost errors occur in mathematics 
as well. The technique of extreme cases helps you find and fix these errors 
and deduce correct results instead. 

Here is the sum of the first n odd integers: 

S = 1 + 3 + 5 + ︸ ︷︷ · · · ︸ 
n terms 

Odd numbers are of the form 2k + 1 or 2k − 1. Quickly answer this question: 

Is the last term 2n + 1 or 2n − 1? 

For a general n, the answer is not obvious. You can figure it out, but it is easy 
to make an algebra mistake and be off by one term, which is the difference 
between 2n − 1 and 2n + 1. An extreme case settles the question. Here is the 
recipe for this technique: 
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1.	 Pick an extreme value of n, one where the last 
term in the sum is easy to determine. 

2.	 For that n, determine the last term. 

3.	 See which prediction, 2n − 1 or 2n +1 (or perhaps 
neither), is consistent with this last term. 

The most extreme value of n is 0. Since n is the number of terms, however, 
the meaning of n = 0 is obscure. The next most extreme case is n = 1. With 
only one term, the final (and also first) term is 1, which is 2n − 1. So the 
final term, in general, should be 2n − 1. Thus the sum is 

S = 1 + 3 + 5 + + 2n − 1.· · · 

Using sigma notation, it is 

n−1

S = (2k + 1). 
k=0 

This quick example gives the recipe for extreme-cases reasoning; as a side 
benefit, it may help you spot bugs in your programs. The sum itself has 
an elegant picture, which you learn in Section 4.1 in the chapter on pic­
torial proofs. The rest of this chapter applies the extreme-cases recipe to 
successively more elaborate problems. 

2.2 Integrals 

An integral from the Chapter 1, on dimensions, can illustrate extreme cases 
as well as dimensions. Which of these results is correct:   

√
απ 

∞ 
2 √or ?e−αx dx = π−∞ 

α 

Dimensional analysis answered this question, but forget that knowledge for 
the moment so that you can practice a new technique. 
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2.2 Integrals 

e−5x2

0 1-1

→ 0. 

15 

You can make the correct choice by by looking at the 
integrand e−αx

2 in the two extremes α →∞ and α 
As α becomes large, the exponent −αx2 becomes large 
and negative even when x is only slightly greater than 
zero. The exponential of a large negative number is nearly zero, so the bell 
curve narrows, and its area shrinks. As α → ∞, the area and therefore the 
integral should shrink to zero. The first option, 

√
απ, instead goes to infinity. 

It must be wrong. The second option, π/α, goes to infinity and could be 

e−0.2·x2

0 1-1

correct. 
The complementary test is α 0. The function →

flattens to the horizontal line y = 1; its integral over an 
infinite range is infinity. The first choice, 

√
πα, fails this 

test because instead it goes to zero as α 0. The second √ →
option, π/α, goes to infinity and passes the test. So 
the second option passes both tests, and the first option fails both tests. This 
increases my confidence in 

√ 
π/α while decreasing it, nearly to zero, in 

√
πα. 

If those were the only choices, and I knew that one choice was correct, I 
would choose π/α. However, if the joker who wrote the problem included 

2/α among the choices, then I need a third test to distinguish between 
2/α and π/α. For this test, use a third extreme case: α 1. Wait, how →

is 1 an extreme case? Infinity and zero are extreme, but 1 lies between those 
two so it cannot be an extreme. 

Speaking literally, 1 is a special case rather than an extreme case. So 
extend the meaning of extreme with poetic license and include special cases. 
The tool, named in full, would be the ‘method of extreme and special cases’. 
Or, since extreme cases are also special, it could be the ‘method of special 
cases’. The first option, although correct, is unwieldy. The second option, 
although also sharing the merit of correctness, is cryptic. It does not help 
you think of special cases, whereas ‘extreme cases’ does help you: It tells you 
to look at the extremes. So I prefer to keep the name simple – extreme cases 
– while reminding myself that extreme cases include special cases like α 1. 

In the α → 1 limit the integral becomes 
→ 

∞ 
2 

I ≡ e−x dx, 
−∞ 

where the ≡ notation means ‘is defined to be’ (rather than the perhaps more 
common usage in mathematics for modular arithmetic). It is the Gaussian 
integral and its value is 

√
π. The usual trick to compute it is to evaluate the 

square of the integral: 
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Extreme cases 16 (∫ ) (∫ ) 

I2 = 
∞ 

e−x 2 
dx × 

∞ 

e−x 2 
dx . 

−∞ −∞ 

In the second factor, change the integration variable to y, making the product 

I2 = 
∞ ∞ 

e−αx
2 
e−αy

2 
dx dy. 

−∞ −∞ 

It looks like the integral has become more complicated, but here comes the 
magic trick. The exponentials multiply to give e−(x 2+y 2), integrated over all 
x and y – in other words, over the whole plane. And e−(x 2+y 2) = e−r 2 . So 
the square of the Gaussian integral is also, in polar coordinates, the integral∫ 2 

plane e
−r dA, where dA is the element of area r dr dθ: 

I2 = 
∫ 2π ∫ ∞ 

e−r 
2 
r dr dθ . 

0 0 
dA 

This integral is doable because the r contributed by the dA is the derivative, 
except for a factor of 2, of the r2 in the exponent: 

2 21 
e−r r dr =

2
e−r + C, 

and 

∞ 
2 1 

e−r r dr =
2
. 

0 

The dθ integral contributes a factor of 2π so I2 = 2π/2 = π and the Gaussian 
integral is its square root: 

I = 
∞ 

e−x 2 
dx = 

√
π. 

−∞ 

The only choice consistent with all three extreme cases, even with 2/α 
among them, is 

∞ 

e−αx
2 π 
dx = . 

α−∞ 

This integral could also be guessed by dimensions, as explained in Section 1.2. 
Indeed dimensions tell you more than extreme cases do. Dimensions refutes√
π/α or 

√
π/α2, whereas both choices pass the three extreme-case tests: 
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2.3 Pendulum 17 

α 0 Both choices correctly limit to ∞.• →


α →∞ Both choices correctly limit to 0.
• 

α 1 Both choices correctly limit to 
√
π.• → 

Extreme cases, however, has the virtue of being quick. You do not need 
to find the dimensions for x or α (or invent the dimensions), then find the 
dimensions of dx and of the result. Extreme cases immediately refutes 

√
πα. 

The technique’s other virtues become apparent in the next problem: how a 
pendulum’s period varies with amplitude. 

2.3 Pendulum 

In physics courses, the first problem on oscillations is the ideal spring. Its 
differential equation is 

d2x 
m 
dt2 

+ kx = 0, 

where k is the spring constant. Dividing by m gives 

d2x k 
dt2 

+ 
m
x = 0. 

A consequence of this equation, which we derived in Section 1.4, is 
that the oscillation period is independent of the amplitude. That property is 
characteristic of a so-called simple-harmonic system. The oscillation period 
is: 

T = 2π m. 
k 

Before moving on to the pendulum, pause to make a sanity check. To make 
a sanity check, ask yourself: ‘Is each portion of the formula reasonable, or 
does it come out of left field.’ [For the non-Americans, left field is one of 
the distant reaches of a baseball field, and to come out of left fields means 
an idea come out of nowhere and surprises everyone with how crazy it is.] 
One species of sanity checking is to check dimensions. Are the dimensions on 
both sides correct? In this case they are. The dimensions of spring constant 
are force per length because F = kx, so [k] = MT−2. So the dimensions of 
m/k are simply time, which is consistent with being an oscillation period 
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Extreme cases 18 

T . [Sorry about the almost-ambiguous notation with T (italic) representing 
period and T (roman) representing the time dimension.] 

Another species of sanity checking is checking extreme cases. Is it reason­
able, for example, that m is in the numerator? To decide, check an extreme 
case of mass. As the mass goes to infinity, the period should go to infinity 
because the spring has a hard time moving the monstrous mass; and behold, 
the formula correctly predicts that T → ∞. Is it reasonable that spring 
constant k is in the denominator? Check an extreme case of k. As k 0,→
the spring becomes pathetically weak, and the period should go to infinity. 
Indeed, the formula predicts that T →∞. What about the 2π? To find this 
constant, either solve the differential equation honestly or use a trick invented 

m

l

θ

F = mg sin θ

by Huygens, which I will explain in lecture if you remind me. 
Once the spring has been beaten half to death in physics class, 

the pendulum is sprung on you. We will study how the period of 
a pendulum depends on its amplitude – on the maximum angle of 
the swing, normally called θ0. First, let’s derive the differential 
equation for the pendulum, then deduce properties of its solution 
without solving it. Just as force fights to linearly accelerate an 
object with mass, torque fights to angularly accelerate an object 
with moment of inertia. Compare the following formulas: 

force = mass × linear acceleration,

torque = moment of inertia × angular acceleration.


The first formula is Newton’s second law, so you can easily remember it. The 
second formula follows from the first by analogy, which is the technique of 
Chapter 6. Torque is like force; moment of inertia is like mass; and angular 
acceleration is like linear acceleration. 

The moment of inertia of the bob is I = ml2, and angular acceleration is 
α ≡ d2θ/dt2 (again using ≡ to mean ‘is defined to be’). The tangential force 
trying to restore the pendulum bob to the vertical position is F = mg sin θ. 
Or is it mg cos θ? Decide using extreme cases. As θ 0, the pendulum →
becomes directly vertical hanging downward, and the tangential force F goes 
to zero. Since sin θ 0 as θ 0, the force should contain sin θ rather than → → 
cos θ. 

The torque, which is the force times the lever arm l, is Fl = mgl sin θ. 
Putting all three pieces together: 
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2.3 Pendulum 19 

−mgl sin θ = ml2 d
2θ
,︸ ︷︷ ︸ ︸︷︷︸ × 

dt2 
torque I 

α 

where the minus sign in the torque reflects that it is a restoring torque. The 
mass divides out to produce the pendulum differential equation: 

d

dt

2

2 
θ + g
l 

sin θ = 0. 

This pendulum equation looks similar to the spring equation 

d2x k 
dt2 

+ 
m
x = 0. 

Comparing the two equations produces these analogies: 

x θ, → 
k g 
m 
→ 
l
, 

x sin θ. → 

The first two lines are fine, but the third line contradicts the first one: x 
cannot map to θ and to sin θ. 

Extreme cases help. Sure, θ and sin θ are not identical. However, in the 
extreme case θ 0, which means that the oscillation angle θ also goes to →
zero, the two alternatives θ and sin θ are identical (a picture proof is given in 
??), For small amplitudes, in other words, the pendulum is almost a simple-
harmonic system, which would have a constant period. By analogy with the 
spring equation, the pendulum’s period is 

T = 2π l , 
g 

because the pendulum differential equation has g/l where the spring differen­
tial equation has k/m. This extreme case is further analyzed in Chapter 3 
using the technique of discretization. 

In the Gaussian integral with α, one extreme case was α 0 and another → 
was α → ∞. So try that extreme case here, and see what you can deduce. 
Not much, since an infinite angle is not informative. However, the idea of a 
large amplitude is suggestive and helpful. The largest meaningful amplitude – 
set by the angle of release – is 180◦ or, in radians, θ0 = π. That angle requires 
a rod as the pendulum ‘string’, so that the pendulum does not collapse. Such 
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a pendulum balanced at θ0 = π hangs upside down forever. So T →∞ when 
θ0 → π. Therefore the period should increase as amplitude increases. It 
could decrease initially, for small θ0, then increase as θ0 gets near π. That 
behavior would be nasty. The physical world, at least as a first assumption, 
does not play such tricks on us. 

2.4 Ellipse 

Now try extreme cases and dimensions on these candidate for­
mulas for the area A of an ellipse: 

a. 2	 ab 

b. 2	 a  + 2  b

a 

b 

c. 3	 a /b 

d. 2ab 

e.	 πab 

Let’s take them one by one. 

2•  
	 ab . This product has dimensions of length cubed rather than length 

squared, so it flunks the dimensions test and does not even graduate to 
the extreme-cases tests. But the other choices have correct dimensions 
and require more work. 

2•	 a  + 2  b . Try an extreme ellipse: a super-thin one with a = 0. This case 
satisfies the first step of the recipe: 

Pick an extreme value where the result is easy to determine without 
solving the full problem. 

Now do the second step: 

For that extreme case, determine the result. 

When a = 0 the ellipse has zero area no matter what b is. The third step 
is: 
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2.4 Ellipse 21 

Determine the prediction in this extreme case, and compare it with the 
actual value from the second step. 

When a = 0, the candidate A = 2 a + 2 b becomes A = 2b . It can be zero, 
but alas only when b = 0. So the candidate fails this extreme-case test 
except when a = 0 and b = 0: a boring case of the ellipse shrinking to a 
point. 

3• a /b . This candidate passes the thin-ellipse test with a → 0. When 
a → 0, the predicted and actual areas are zero no matter the value of b.
Perhaps the candidate is correct. However, it must pass all tests – and even 
then it may be wrong. If a → 0 is a reasonable test, then by symmetry 
b → 0 should also be worth trying. This test pushes the candidate off the 
stage. When b → 0, which produces an infinitely thin vertical ellipse with 
zero area, the candidate predicts an infinite area whereas the actual area 
is zero. Although the candidate passed the first test, it fails the second 
test. 

2• ab . This candidate is promising. When a → 0 or b → 0, the actual and 
predicted areas are zero. So the candidate passes both extreme-case tests. 
Both a → 0 and b → 0 are literal extreme cases. Speaking figuratively, 
a = b is also an extreme case. When a = b, the candidate predicts that 
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A = 2a2 or, since a = b, that A = 2b2. When a = b, however, the ellipse 
is a circle with radius a, and that circle has area πa2 rather than 2a2. So 
the prediction fails. 

πab . This candidate passes all three tests. Just like A = 2ab, it passes • 
a 0 and b 0. Unlike A = 2ab, this candidate also passes the a = b→ →
test (making a circle). With every test that a candidate passes, confidence 
in it increases. So you can be confident in this candidate. And indeed it 
is correct. 

This example introduces extreme cases in a familiar problem, and one 
where you have choices to evaluate. We next try a three-dimensional problem 
and guess the answer from scratch. But before moving on, I review the 
extreme-case tests and discuss how to choose them. Two natural extremes 
are a 0 and b 0. However, where did the third test a b originate, and → → →
how would one think of it? The answer is symmetry, a useful trick. Actually 
it’s a method: ‘a method is a trick I use twice’ (George Polya). Symmetry 
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already helped us think of trying b 0 after we tried a 0. So the following → →
use of it is the second application. Since a and b are lengths, it is natural to 

∞0−∞

compare them by forming their (dimensionless) ratio a/b. The range of a/b 
is between 0 and ∞: 

The immediately interesting values in this range are its endpoints 0 and ∞. 
However, this range is a runt. It is asymmetric, incomplete, and lives on only 
the right one-half of the real line. To complete the range so that it extends 

∞0−∞

from −∞ to ∞, take the logarithm of a/b. Here are the possible values of 
ln(a/b): 

The interesting values on this line are again the endpoints, which are −∞
and ∞, but also a new one: the middle point, 0. The interesting values of 
a/b are 0, 1, and ∞. These points are the three extreme cases for testing the 
candidate ellipse areas: 

a/b = 0 b = 0,→ 

a/b = ∞ → a = 0, 
a/b = 1 a = b.→ 

2.5 Truncated pyramid 

In the ellipse example, extreme cases helped us evaluate


h

b

a

Guess its volume 

candidates for the area. The next example shows you how

to use extreme cases to find a result. Beyond area, the next

level of complexity is volume, and the result we look for is

the volume of the truncated pyramid formed by slicing off

a chunk of the familiar pyramid with a square base. It has

therefore a square base and square top that, for simplicity,

we assume is parallel to the base. Its height is h, the side

length of the base is b, and the side length of the top is a.

by finding a formula that meets all the extreme-case tests!


In doing so do not forget the previous technique: dimensions. Any for­
mula must have dimensions of length cubed, so forget about candidate vol­
umes like V = a2b2 or V = a2bh. But a2b2/h would pass the dimensions 
test. 
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2.5 Truncated pyramid 23 

What are the extreme cases? The simplest is h 0, producing a pyramid →
with zero volume. So a2b2/h, although having the correct dimensions, fails 
because it bogusly produces an infinite volume. Plausible candidates – those 
producing zero volume – could be ha2 or h2a. To choose between those 
two, think about how the volume must depend on the height. Chop the 
pyramid into little vertical slivers. When you double the height, you double 
the height of each sliver, which doubles the volume. So the volume should be 
proportional to height: 

V ∝ h. 

A few extreme-cases tests refine this guess. The remaining variables are a 
and b. The ellipse had only a and b. In the ellipse, a and b are equivalent 
lengths. Interchanging a and b rotates the ellipse 90◦ but preserves the same 
shape and area. For the truncated pyramid, interchanging a and b flips the 
pyramid 180◦ but preserves the shape and area. So a and b in the truncated 
pyramid might have the same interesting extreme cases as do a and b in the 
ellipse: a 0, b 0, and a b. So let’s apply each test in turn, ensuring → → →
that the formulas developed in the stepwise process meet all the tests so far 
investigated. 

a 0 . This limit shrinks the top surface from a square to a point, making • →
the truncated pyramid an ordinary pyramid with volume hb2/3. This 
formula also passes the V ∝ h test. So V = hb2/3 is a reasonable guess 
for the truncated volume. Continue testing it. 

b 0 . This limit shrinks the bottom surface from a square to a point, • →
producing an upside-down-but-otherwise-ordinary pyramid. The previous 
candidate V = hb2/3 predicts a zero volume, no matter what a is, so 
V = hb2/3 cannot be correct. The complementary alternative V = ha2/3 
passes the b 0 test. Great! →

Alas, it fails the first test a 0. One formula, V = hb2/3, works for → 
a 0; the other formula, V = ha2/3, works for b 0. Can a candidate → →
pass both tests? Yes! Add the two half-successful candidates: 

V = 1
3
ha2 + 1

3
hb2 = 1

3
h(a 2 + b2). 

Two alternatives that also pass both extreme-cases tests, but are not as 
easy to dream up, are 
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V = 
3
1 
h(a + b)2 . 

and 

V = 
3
1 
h(a − b)2 . 

a b . In this limit, the pyramid becomes a rectangular prism with height • → 

h and base area b2 (or a2). So its volume is V = hb2. The hard-won 
candidate V = h(a2 + b2)/3, designed to pass the two previous extreme 
cases, fails this one. Nor do the two alternatives pass. One candidate that 
does pass is V = hb2. However, it is asymmetric: It treats b specially, 
which is particularly absurd when a = b. What about V = ha2? It treats 
a specially. What about V = h(a2 + b2)/2? It is symmetric and passes 
the a = b test, but it fails the a 0 and b 0 tests.→ →

We need to expand our horizons. One way to do that is to compare 
the three candidates that passed a 0 and b 0:→ → 

V = 1
3
h(a 2 + b2) = 1

3
h(a 2 + b2), 

V = 
3
1 
h(a + b2) = 

3
1 
h(a 2 + 2ab + b2), 

V = 1
3
h(a − b2) = 1

3
h(a 2 − 2ab + b2). 

The expanded versions share the a2 and b2 terms in the parentheses, 
while differing in the coefficient of the ab term. The freedom to choose 
that coefficient makes sense. The product ab is 0 in either limit a 0 or→ 
b 0. So adding any amount of ab in the parentheses will not affect the 
a 
→ 

0 and b 0 tests. With just the right coefficient of ab, the candidate → →
might also pass the a = b test. Therefore, find the right coefficient n be 
in 

V = 
3
1 
h(a 2 + nab + b2). 

Use the extreme (or special) case a = b. Then, the candidate becomes 
V = h(2 + n)b2/3. To make this volume turn into the correct limit hb2, 
the numerical factor (2 + n)/3 should equal 1 meaning that n = 1 is the 
solution: 

V = 
3
1 
h(a 2 + ab + b2). 
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2.6 The magic one-third 25 

2.6 The magic one-third 

You may wonder about the factor of one-third in the volumes 

b

h = b

of a truncated or regular pyramid. An extreme-case trick ex­
plains its origin. First I explain the trick in fewer dimensions: 
another example of analogy, a technique worthy of its own chap­
ter (Chapter 6). Instead of immediately explaining the one-
third in the volume of a pyramid, which is a difficult three-
dimensional problem, first find the corresponding constant in a 
two-dimensional problem: the area A of a triangle with base b and height h. 
Its area is A ∼ bh. What is the constant? Choose a convenient triangle: per­
haps a 45-degree right triangle where h = b. Two such triangles form a square 
with area b2, so A = b2/2 when h = b. The constant in A ∼ bh is therefore 
1/2 and A = bh/2. Now use the same construction in three dimensions. 

What pyramid, when combined with itself perhaps several 
times, makes a familiar shape? Only the aspect ratio h/b matters 
in the following discussion. So choose b conveniently, and then 
choose h to make a pyramid with the clever aspect ratio. The 
goal shape is suggested by the square pyramid base. Another 
solid with the same base is a cube. Perhaps several pyramids can 
combine into a cube of side b. To ease the upcoming arithmetic, 
I choose b = 2. What should h be? To decide, imagine how 
the cube will be constructed. Each cube has six faces, so six 
pyramids might make a cube with each pyramid base forming one face of the 
cube and each pyramid tip facing inwards, meeting in the center of the cube. 
For the points to meet in the center of the cube, the height must be h = 1. 
So six pyramids with a = 0 (meaning that they are not truncated), b = 2, 
and h = 1 make a cube with side length 2. The volume of one pyramid is 

cube volume 8 4 
V = 

6 
=

6
=

3
. 

The volume of the pyramid is V ∼ hb2, and I choose the missing constant 
so that the volume is 4/3. Since hb2 = 4 for these pyramids, the missing 
constant is 1/3: 

V = 
3
1 
hb2 = 

3
4 
. 

So that the general, truncated pyramid agrees with the ordinary pyramid in 
the limit that a 0, the constant for the truncated pyramid is also one-third: → 
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1 
V = 3 h(a 

2 + ab + b2). 

2.7 Drag 

The final application of extreme-cases reasoning is to solutions of these nasty 
nonlinear, coupled, partial-differential equations: 

∂v + (v·∇)v = − 
ρ 
1 ∇p + ν∇2v, (3 eqns) 

∂t 

∇·v = 0. (1 eqn) 

The top three equations are the Navier–Stokes equations of fluid mechanics, 
and the bottom equation is the continuity equation. In the four equations is 
the answer to the following question: 

When you drop a paper cone (like a coffee filter) and a 
smaller cone with the same shape, which falls faster? 

Solving those equations is a miserable task, which is why we will instead 
use our two techniques: dimensions and then extreme cases. For the moment, 
assume that each cone instantly reaches terminal velocity; that approximation 
is reasonable but we will check it in ?? using the technique of discretization. 
So we need to find the terminal velocity. It depends on the weight of the cone 
and on the drag force F resisting the motion. 

To find the force, we use dimensions and add a twist to handle problems 
like this one that have an infinity of dimensionally correct answers. The 
drag force depends on the object’s speed v; on the fluid’s density ρ; on its 
kinematic viscosity ν; and on the object’s size r. Now find the dimensions 
of these quantities and find all dimensionally correct statements that are 
possible to make about F . Size r has dimensions of L. Terminal velocity v has 
dimensions of LT−1. Drag force F has dimensions of mass times acceleration, 
or MLT−2. Density ρ has dimensions of ML−3. The dimensions of viscosity 
ν are harder. In the problem set, you show that it has dimensions of L2T−1. 
If you look for combinations of ν, ρ, and r, and v that produce dimensions of 
force, an infinite number of solutions appear, whereas in previous examples 
using dimensions, only one possibility had the correct dimensions. 

Hence the need for a more advanced method to handle the infinite pos­
sibilities here. Return to the first principle of dimensions: you cannot add 
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apples to oranges. The requirement that the sides of an equation match di­
mensionally is one consequence of the apples-and-oranges principle. Another 
consequence is that every term in an equation must have the same dimensions. 
So imagine any true statement about drag force: 

A + B = C 

where A, B, and C might be messy combinations of the variables. Then 
divide each term by A: 

A B C+ = . 
A A A 

Because A, B, and C have the same dimensions, each ratio is dimensionless. 
So you can take any (true) statement about drag force and rewrite it in 
dimensionless form. No step in this argument depended on the details of 
drag. It required only that apples must be added to apples. So: 

You can write any true statement about the world in dimensionless form. 

Furthermore, you can construct any dimensionless expression using di­
mensionless groups: products of the variables where the product has no di­
mensions. Since you can write any true statement in dimensionless form, and 
can write any dimensionless form using dimensionless groups: 

You can write any true statement about the world using dimensionless 
groups. 

In the problem of free fall, with variables v, g, and h, the dimensionless 
group is v/

√
gh, perhaps raised to a power. With only one group, the only 

dimensionless statement has the form: 

the one group = dimensionless constant, 

which results in v ∼
√
gh. 

For the drag, what are some dimensionless groups? One group is F/ρv2r2, 
as you can check by working out its dimensions. A second group is rv/ν. Any 
other group, it turns out, can be formed from these two groups. With two 
groups, the most general dimensionless statement is 
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one group = f(other group), 

where f is a dimensionless function. It has a dimensionless argument and 
must return a dimensionless value because the left side of the equation is 
dimensionless. Using F/ρv2r2 as the first group: 

F rv 
ρv2r2 

= f
ν
. 

The second group, which is the quantity in the parentheses, is the Reynolds 
number and is often written Re. It measures how turbulent the fluid flow 
is. To find the drag force F , we have to find the function f . It is too hard to 
determine fully – it would require solving the Navier–Stokes equations – but 
it might be possible in extreme cases. The extreme cases here are Re 0 
and Re →∞. 

→ 

Let’s hope that the falling cones are in one of those limits! To decide, 
evaluate Re for the falling cone. From experience, even before you drop the 
cones to decide which falls faster, either cone falls at roughly v ∼ 1 m s−1. 
Its size is roughly r ∼ 0.1 m. And the viscosity of the fluid (air) in which it 
falls is ν ∼ 10−5 m2 s−1, which you can find by looking it up in a table by 
an online search, or by applying these approximation methods to physics and 
engineering problems (the theme of another course and book on approxima­
tion). So 

vr ︷ ︸︸ ︷ 
Re ∼ 

0.1 m × 1 m s−1 
∼ 104 .

10−5 m2 s−1 

ν 

So Re � 1, and we are safe in looking just at that extreme case. Even if the 
estimate for the speed and size are inaccurate by, say, a factor of 3 each, the 
Reynolds number is at least 1000, still much larger than 1. 

To decide what factors are important in the high-Reynolds-number limit, 
look at the form of the Reynolds number: rv/ν. One way to send it to infinity 
is the limit ν → 0. Viscosity, therefore, becomes irrelevant as Re → ∞, and 
in that limit the drag force F should not depend on viscosity. Although the 
conclusion is mostly correct, there are subtle lies in the argument. To clarify 
these subtleties required two hundred years of mathematical and physical 
development in both theory and experiment. So I will skip the truth, and hope 
that you are content at least for the moment with almost-truth, especially 
since it gives the same answer as the truth. 
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Let’s look at how the requirement of independence from ν constrains the 
general dimensionless form: 

F = f(Re)
ρv2r2 

The left side does not contain viscosity ν. The right side might because Re 
contains ν. So if any Reynolds number shows up on the right side, then 
viscosity will appear on the right side, with no viscosity on the left side with 
which to cancel it. And that situation would violate the extreme-case result 
that, in the Re →∞ limit, the drag force is independent of viscosity. So the 
right side must be independent of Re. Since f depended only on the Reynolds 
number, which has just been stricken off the list of allowed dependencies, the 
right side f(Re) is a dimensionless constant. Therefore, 

F = dimensionless constant,
ρv2r2 

or 

F ∼ ρv2 r 2 . 

And now we have the result that we need to find the relative terminal velocity 
of the large and small cones. The cones reach terminal speed when the drag 
force balances the weight. The weight is proportional to the area of the paper, 
so it is proportional to r2. The drag force is also proportional to r2, as we 
just found. To summarize: 

2 2 2ρv r r . ︸ ︷︷ ︸ ∝ ︸︷︷︸ 
weight F 

The factor of r2 on each side divides out, so 

12 v ∝ 
ρ
, 

showing that 

The cones’ terminal velocity is independent of its size. 

That result is indeed what we found in class by doing the experiment. So, 
without having to solve the Navier–Stokes differential equations, experiment 
and cheap theory agree! 
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2.8 What you have learned 

The main theme of this chapter is the recipe for extreme-cases reasoning for 
checking and guessing the answers to complicated problems: 

1.	 Pick an extreme value where the result is easy to determine without solv­
ing the full problem; for example, for the ellipse, its area is easy when 
a = 0 or b = 0. 

2.	 For that extreme case, determine the result. For the ellipse, the area is 
zero when either a = 0 or b = 0. 

3.	 Determine the prediction in this extreme case, and compare it with the 
actual value from the second step. So, for the ellipse, any candidate for 
the area had better go to zero when a = 0 or b = 0. 

Extreme cases also complements the technique of dimensions, once the 
problems become too complicated for the naive methods of the previous chap­
ter. That symbiosis was illustrated in computing the relative terminal veloc­
ities of the falling cones. The general recipe is based on the maxim that You 
can write any true statement about the world using dimensionless 
groups. It leads to the following problem-solving plan for finding, say, drag 
force F : 

1.	 Find the quantities on which F depends, and find the dimensions of F 
and of those quantities. 

2.	 Make dimensionless groups from those quantities. 

3.	 Write the result in general dimensionless form: 

group containing F = f(other groups). 

4.	 Use extreme-cases reasoning to guess the form of the dimensionless func­
tion f . 
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