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Dimensions
1 
Dimensions, often called units, are familiar creatures in physics and engi­
neering. They are also helpful in mathematics, as I hope to show you with 
examples from differentiation, integration, and differential equations. 

1.1 Free fall 
Dimensions are often neglected in mathematics. Calculus textbooks state 
many problems in this form: 

A ball falls from a height of h feet. Neglecting air resistance, estimate 
its speed when it hits the ground, given a gravitational acceleration of 
g feet per second squared. 

The units, highlighted with boldface type, have been separated from g or h, 
making g and h pure numbers. That artificial purity ties one hand behind 
your back, and to find the speed you are almost forced to solve this differential 
equation: 

d2y = −g, with y(0) = h and ẏ(0) = 0,
dt2 

where y(t) is the ball’s height at time t, ẏ(t) is its velocity, and g is the 
strength of gravity (an acceleration). This second-order differential equation 
has the following solution, as you can check by differentiation: 

ẏ(t) = −gt, 

y(t) = − 
2
1 
gt2 + h. 

The ball hits the ground when y(t) = 0, which happens when t0 = 2h/g. 
The speed after that time is ẏ(t) = −gt0 = −

√
2gh. This derivation has many 
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Dimensions 4 

spots to make algebra mistakes: for example, not taking the square root when 
solving for t0, or dividing rather than multiplying by g when finding the speed. 

Here’s the same problem written so that dimensions help you: 
A ball falls from a height h. Neglecting air resistance, estimate its 
speed when it hits the ground, given a gravitational acceleration of g. 

In this statement of the problem, the dimensions of h and g belong to the 
quantities themselves. The reunion helps you guess the final speed, without 
solving differential equations. The dimensions of h are now length or L for 
short. The dimensions of g are length per time squared or LT−2; and the 
dimensions of speed are LT−1. The only combination of g and h with the 
dimensions of speed is 

gh × dimensionless constant. 

An estimate for the speed is therefore 

v ∼ gh, 

where the ∼ means ‘equal except perhaps for a dimensionless constant’. Be­
sides the minus sign (which you can guess) and the dimensionless factor 

√
2, 

the dimensions method gives the same answer as does solving the differential 
equation – and more quickly, with fewer places to make algebra mistakes. 
The moral is: 

Do not rob a quantity of its intrinsic dimensions. 

Its dimensions can guide you to correct answers or can help you check pro­
posed answers. 

1.2 Integration 

If ignoring known dimensions, as in the first statement of the free-fall problem, 
hinders you in solving problems, the opposite policy – specifying unknown 
dimensions – can aid you in solving problems. You may know this Gaussian 
integral: 

∞ 

e−x 2 
dx = 

√
π. 

−∞ 

What is the value of 

4 4 
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1.2 Integration 5 

∞ 

e−αx
2 
dx, 

−∞ 

where α is a constant? The integration variable is x so after you evaluate 
the integral over the limits, the x disappears; but α remains. The result 
contains only α and maybe dimensionless numbers, so α is the only quantity 
in the result that could have dimensions. For dimensional analysis to have a 
prayer of helping, α needs dimensions. Otherwise you cannot say whether, for 
example, the result should contain α or contain α2; both choices have identical 
dimensions. Guessing the answer happens in three steps: (1) specifying the 
dimensions of α, (2) finding the dimensions of the result, and (3) using α to 
make a quantity with the dimensions of the result. 

In the first step, finding the dimensions of α, it is more intuitive to specify 
the dimensions of the integration variable x, and let that specification decide 
the dimensions of α. Pretend that x is a length, as its name suggests. Its 
dimensions and the exponent −αx2 together determine the dimensions of α. 
An exponent, such as the 7 in 27, says how many times to multiply a quantity 
by itself. The notion ‘how many times’ is a pure number; the number might 
be negative or fractional or both, but it is a pure number: 

An exponent must be dimensionless. 

Therefore αx2 is dimensionless, and the dimensions of α are L−2. A conve­
nient shorthand for those words is 

[α] = L−2 , 

where [quantity] stands for the dimensions of the quantity. 
The second step is to find the dimensions of the result. The left and right 

sides of an equality have the same dimensions, so the dimensions of the result 
are the dimensions of the integral itself: 

∞ 
2 

e−αx dx. 
−∞ 

What are the dimensions of an integral? An integral sign is an elongated 
‘S’, standing for Summe, the German word for sum. The main principle of 
dimensions is: 

5 5 
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You cannot add apples to oranges. 

Two consequences are that every term in a sum has identical dimensions 
and that the dimensions of a sum are the dimensions of any term. Similarly, 
given the kinship of summation and integration, the dimensions of the integral 
are the dimensions of e−αx2 

dx. The exponential, despite the fierce-looking 
exponent of −αx2, is just the pure number e multiplied by itself several times. 
Since e has no dimensions, eanything has no dimensions. So the exponential 
factor contributes no dimensions to the integral. However, the dx might 
contribute dimensions. How do you know the dimensions of dx? If you read 
d as ‘a little bit of’, then dx becomes ‘a little bit of x’. A little bit of length 
is still a length. More generally: 

dx has the same dimensions as x. 

The product of the exponential and dx therefore has dimensions of length, 
as does the integral – because summation and its cousin, integration, cannot 
change dimensions. 

The third step is to use α to construct a quantity with the dimensions of 
the result, which is a length. The only way to make a length is α−1/2, plus 
perhaps the usual dimensionless constant. So 

∞ 

e−αx
2 
dx ∼ √1 

α
. 

−∞ 

The twiddle ∼ means ‘equal except perhaps for a dimensionless constant’. 
The missing constant is determined by setting α = 1 and reproducing the 
original integral: 

∞ 

e−x 2 
dx = 

√
π. 

−∞ 

Setting α = 1 is a cheap trick. Several paragraphs preceding exhorted you 
not to ignore the dimensions of quantities; other paragraphs were devoted to 
deducing that α had dimensions of L−2; and now we pretend that α, like 1, 
is dimensionless?! But the cheap trick is useful. It tells you that the missing 
dimensionless constant is 

√
π, so 

∞ 

e−αx
2 π 
dx = . 

α−∞ 

6 6 
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1.3 Taylor and MacLaurin series 7 

The moral of the preceding example is: 

Assign dimensions to quantities with unspecified dimensions. 

In this example, by assigning dimensions to x and α, we got enough informa­
tion to guess the integral. 

1.3 Taylor and MacLaurin series 

The preceding example applied dimensions to integrals. Dimensions also help 
you remember Taylor series, a result based on derivatives. The idea of Taylor 
series is that if you know a function and all its derivatives at one point, you can 
approximate the function at other points. As an example, take f(x) = 

√
x. 

You can use Taylor series to approximate 
√

10 by knowing f(9) and all the 
derivatives f ′(9), f ′′(9), . . . . 

The MacLaurin series, a special case of Taylor series when you know f(0), 
f ′(0), . . . , looks like: 

f(x) = f(0) + stuff 

What is the missing stuff? The first principle of dimensions can help, that you 
cannot add apples to oranges, so all terms in a sum have identical dimensions. 
The first term is the zeroth derivative f(0). The first term hidden in the 
‘stuff’ involves the first derivative f ′(0), and this new term must have the 
same dimensions as f(0). To draw a conclusion from this sameness requires 
understanding how differentiation affects dimensions. 

In the more familiar notation using differentials, 

f ′(x) = df . 
dx 

So the derivative is a quotient of df and dx. You can never – well, with 
apologies to Gilbert & Sullivan, hardly ever – go astray if you read d as ‘a 
little bit of’. So df means ‘a little bit of f ’, dx means ‘a little bit of x’, and 

f ′(x) = df = a little bit of f
. 

dx a little bit of x 

Using the [quantity] notation to stand for the dimensions of the quantity, the 
dimensions of f ′(x) are: 
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[a little bit of f ][f ′(x)] = 
[a little bit of x]

. 

Since a little bit of a quantity has the same dimensions as the quantity itself, 

[a little bit of f ] [f ][f ′(x)] = 
[a little bit of x]

=
[x]
. 

Differentiating with respect to x is, for the purposes of dimensional analy­
sis, equivalent to dividing by x. 

So f ′(x) has the same dimensions as f/x. 
This strange conclusion is worth testing with a familiar example. Take 

distance x as the function to differentiate, and time as the independent vari­
able. The derivative of x(t) is ẋ(t) = dx/dt. [Where did the prime go, as 
in x′(t)? When the independent variable is time, a dot instead of a prime is 
used to indicate differentiation.] Are the dimensions of ẋ(t) the same as the 
dimensions of x/t? The derivative ẋ(t) is velocity, which has dimensions of 
length per time or LT−1. The quotient x/t also has dimensions of length per 
time. So this example supports the highlighted conclusion. 

The conclusion constrains the missing terms in the MacLaurin series. The 
first missing term involves f ′(0), and the term must have the same dimensions 
as f(0). It doesn’t matter what dimensions you give to f(x); the principle of 
not adding apples to oranges applies whatever the dimensions of f(x). Since 
its dimensions do not matter, choose a convenient one, that f(x) is a volume. 
Do not, however, let x remain unclothed with dimensions. If you leave it 
bare, dimensions cannot help you guess the form of the MacLaurin series: If 
x is dimensionless, then differentiating with respect to x does not change the 
dimensions of the derivatives. Instead, pick convenient dimensions for x; it 
does not matter which dimensions, so long as x has some dimensions. Since 
the symbol x often represents a length, imagine that this x is also a length. 

The first derivative f ′(0) has dimensions of volume over length, which 
is length squared. To match f(0), the derivative needs one more power of 
length. The most natural object to provide the missing length is x itself. As 
a guess, the first-derivative term should be xf ′(0). It could also be xf ′(0)/2, 
or xf ′(0) multiplied by any dimensionless constant. Dimensional analysis 
cannot tell you that number, but it turns out to be 1. The series so far is: 

f(x) = f(0) + xf ′(0) + · · · . 

8 8 
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1.4 Cheap differentiation 9 

Each successive term in a MacLaurin (or Taylor) series contains a suc­
cessively higher derivative. The first term used f(0), the zeroth derivative. 
The second term used f ′(0), the first derivative. The third term should use 
the second derivative f ′′(0). The dimensions of the second derivative are vol­
ume over length squared. because each derivative divides f by one length. 
Compared to the volume, f ′′(0) lacks two lengths. The most natural quantity 
to replace those lengths is x2, so the term should be x2f ′′(0). It could be 
multiplied by a dimensionless constant, which this method cannot find. That 
number turns out to be 1/2, and the term is x2f ′′(0)/2. The series is now 

f(x) = f(0) + xf ′(0) + 
2
1 
x 2f ′′(0) + · · · . 

You can guess the pattern. The next term uses f (3)(0), the third deriv­
ative. It is multiplied by x3 to fix the dimensions and by a dimensionless 
constant that turns out to be 1/6: 

f(x) = f(0) + xf ′(0) + 
2
1 
x 2f ′′(0) + 

6
1 
x 3f (3)(0) + · · · 

The general term is 

xnf (n)(0) 
n! 

, 

for reasons that will become clearer in ?? on analogies and operators. This 
example illustrates how, if you remember a few details about MacLaurin 
series – for example, that each term has successively higher derivatives – then 
dimensional analysis can fill in the remainder. 

1.4 Cheap differentiation 

The relation [f ′(x)] = [f ] / [x] suggests a way to estimate the size of deriv­
atives. Here is the differential equation that describes the oscillations of a 
mass connected to a spring: 

d2x 
m 
dt2 

+ kx = 0, 

where m is the mass, x is its position, t is time, and k is the spring constant. 
In the first term, the second derivative d2x/dt2 is the acceleration a of the 
mass, so m(d2x/dt2) is ma or the force. And the second term, kx, is the force 
exerted by the spring. In working out what the terms mean, we have also 

2008-03-06 13:24:47 / rev ebd336097912+

Cite as: Sanjoy Mahajan, course materials for 18.098 / 6.099 Street-Fighting Mathematics, IAP 2008. 
            MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. 
                                            Downloaded on [DD Month YYYY].

9 9 



10 10 

Dimensions 10 

checked that the terms have the same dimensions (here, dimensions of force). 
So the equation is at least dimensionally correct. 

Here’s how to estimate the size of each term. The dimensions of d2x/dt2 

comes from dividing the dimensions of x by the dimensions of t2. The size 
of d2x/dt2 is estimated by dividing the size of x by the size of t2. Why not 
instead divide the dimensions of x2 by those of t2? The numerator, after all, 
has a d2 in it. To answer that question, return to the maxim: d means ‘a 
little bit of’. So dx means ‘a little bit of x’, and d2x = d(dx) means ‘a little 
bit of a little bit of x’. The numerator, therefore does not have anything to 
do with x2. Instead, it has the same dimensions as x. Another way of saying 
the same idea is that differentiation is a linear operation. 

Even if x/t2 is a rough estimate for the second derivative, x and t are 
changing: How do you know what x and t to use in the quotient? For x, 
which is in the numerator, use a typical value of x. A typical value is the 
oscillation amplitude x0. For t, which is in the denominator, use the time in 
which the numerator changes significantly. That time – call it τ – is related 
to the oscillation period. So 

dx typical x x0 
,

dt 
∼ 

τ 
∼ 
τ 

and 

d2x d 
( 
dx 
) 

1 x0 x0 
dt2 

= 
dt dt 

∼ 
τ τ 

= 
τ 2 
. 

Now we can estimate both terms in the differential equation: 

d2x x0 
m 
dt2 
∼ m
τ 2 
. 

kx ∼ kx0, 

The differential equation says that the two terms add to zero, so their sizes 
are comparable: 

x0 
m
τ 2 
∼ kx0. 

Both sides contain one power of the amplitude x0, so it divides out. That 
cancellation always happens in a linear differential equation. With x0 gone, 
it cannot affect the upcoming estimate for τ . So 
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1.5 Free fall revisited 11 

In ideal spring motion – so-called simple harmonic motion – the oscilla­
tion period is independent of amplitude. 

After cancelling the x0, the leftover is k ∼ m/τ2 or τ ∼ m/k. A quantity 
related to the time τ is its reciprocal ω = τ −1, which has dimensions of inverse 
time or T−1. Those dimensions are the dimensions of frequency. So 

ω = τ−1 k
.∼ 
m 

When you solve the differential equation honestly, this ω is exactly the angular 
frequency (angle per time) of the oscillations. The missing constant, which 
dimensional analysis cannot compute, is 1. In this case, dimensional analysis, 
cheap though it may be, gives the exact frequency. 

1.5 Free fall revisited 

The ball that fell a height h was released from rest. What if it had an initial 
velocity v0. What is its impact velocity vfinal? 

1.6 What you have learned 

Preserve dimensions in quantities with dimensions: Do not write ‘g meters• 
per second squared’; write g. 

Choose dimensions for quantities with arbitrary dimensions, like for x and• 
α in 

∞ 
2 

e−αx dx. 
−∞ 

Exponents are dimensionless. • 

You cannot add apples to oranges: Every term in an equation or sum • 
has identical dimensions. Another consequence is that both sides of an 
equation have identical dimensions. 

The dimensions of an integral are the dimensions of everything inside it, • 
including the dx. This principle helps you guess integrals such as the 
general Gaussian integral with −αx2 in the exponent. 

1 11 
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The dimensions of a derivative f ′(x) are the dimensions of f/x. This• 
principle helps reconstruct formulas based on derivatives, such as Taylor 
or MacLaurin series. 

The size of df/dx is roughly • 

typical size of f

x interval over which f changes significantly


See the short and sweet book by Cipra [1] for further practice with di­
mensions and with rough-and-ready mathematics reasoning. 

12 12 




