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The goal of this paper is to prove Sarkovskii’s theorem and its con-
verse, important results in the study of one-dimensional dynamical systems.
Sarkovskii’s theorem is important because its hypothesis is very easy to sat-
isfy, and yet it provides an interesting conclusion about the periodic points
of functions. Furthermore, in proving the converse, we see a number of in-
teresting examples of one-dimensional dynamical systems that help to guide
our intuition.

We first need a brief piece of preliminary notation and then we can state
and prove Sarkovskii’s theorem and converse.

Given the following sequence:
3,5,7,...,2-3,2-5,...,22-3,22.5,...,2".3,2".5,...,23, 2221

We define an ordering on the natural numbers by a > b if a appears
before b in the above sequence.

Sarkovskii’s Theorem: Suppose f : R — R is continuous. Suppose f
has a periodic point of prime period k. If & > [ in the previously defined
ordering, then f also has a periodic point of prime period .

We have three main cases to prove: f has a periodic point ¢ where in
one case ¢ has odd prime period, in another ¢ has a prime period of 2™ for
some m € ZT, and in the last ¢ has a prime period of p - 2™ for p odd and
1 < m. For a proof of the first two cases, see An Introduction to Chaotic
Dynamical Systems by Robert Devaney.

In this paper, we will prove the case where f has a periodic point with
prime period p - 2" for p odd and 1 < m given the case for prime period p
with p odd and the case for prime period 2°.



Proof: Suppose that f has a periodic point with prime period p - 2™ for
p odd and 1 < m. Then f2" has a periodic point with prime period p, and
by the odd p case of Sarkovskii’s theorem it has periodic points with prime
period ¢ - 2% for all odd natural numbers g and whole numbers a such that
g > pora>1 Thus f has periodic points of prime period ¢ - 2% for all
odd natural numbers g and whole numbers a such that ¢ > p or a > m. f
must thus have a periodic point of prime period 2™+, and thus by the 2¢
case of Sarkovskii’s theorem it also has periodic points of prime period 2¢
for 0 <a<m.

Converse of Sarkovskii’s Theorem: If k > [ in the previously defined
ordering, then there exists a continuous function f : R — R with a periodic
point of prime period [ but none periodic points of prime period k.

We are free to instead find functions f : I — I, with I = [0, 1] that have
this property as they can easily be extended to the real numbers. I (“the
interval”) will continue to be defined as it is here throughout the rest of the
paper.

The converse case can be reduced to four lemmas by observing the fol-
lowing:

If a continuous function from the interval to itself has no periodic points
of prime period b then it has no periodic points of prime period a j b (in
the above ordering), since if it did, then Sarkovskii’s theorem would imply
that it had a periodic point of prime period b. Thus we only need to prove
the following:

Lemma 1: A continuous function f : I — [ exists such that f has a
periodic point of prime period 2n + 1 but not one of prime period 2n — 1 for

each n € Z+.

Proof: Define f: I — I as follows:

itnax z €0, 2],
. 1+ —x z €[5, 4],
T4+14+4 -2z zelf B,
R x € [ 1]

f is continuous by definition, and I claim 0 is part of a 2n + 1 cycle. 1
claim f%(0) has values as follows:



0 ZZO,
F0) =95 = 3bl(€ 3 iodd
T+ 5 [21(€ %t 1]) i even,i # 0.

for 0 < i < 2n and f2"*1(0) = 0, where [z] is the greatest integer less
than or equal to x. This can be seen by induction: f(0) = %, thus the n
odd case is true for i = 1. Also, f(3) = 3 4+ 5=, thus the n even case is
true for ¢ = 2. Now we show the inductive cases of the n even and n odd
cases. Using the definition of f, i odd — fi2(0) =1 — (1+ 5= — f%(0)) =
f40)— 21 = %— »[2]. Similarly, i even — fi72(0) = 1+ —(1— f4(0)) =
F0) + 5, = 5 + 5[5,

Now we must show that f has no cycles of prime period 2n — 1. For
this discussion, assume @ is an integer, 0 < a < n. Since f is piecewise
linear, we can say that f2¢F!([L <tl]) = [1 1] and fz(”_“)([% + 21t
atl1y = [1 1] using our previous knowledge of the orbit of 0. We can also
say that f29([3,1]) = [§ — &,1] and f2¢1([$,1]) = [0, ; + ). Thus
erhl({ln7 ag;Ll]) — [% _ n_2(iL_1’ 1] _ [a;;L17 1] and f2n71([ + %7 § 4 a+1]) —
(0,2 + 2]. Thus f2” ! has no fixed points on [0, 3] U [5 + 5-,1] (since we
know f2” 1(2n) # 5~ for all integers i, 0 < i < 2n).

We must now con51der possible fixed points for f2"~! on [f 5+ Qn]
fznfl([Z, 5+ 2n]) = I, and thus f?"~! must have at least one fixed pomt on
i+ 2n] But, f is monotonically decreasing on [21 , 1], and thus by using
knowledge of the orbit of 0 (which tells us the successive images of [, 2 L]
under f) we know that f2"~! is monotonically decreasing on [2, 5 +35;) and
thus there is at maximum one fixed point for f2"~! in this interval, which
must also be a fixed point for f (f must have at least one fixed point in
(2,24 5] since f([3,3+5]) D [3, 3+ 5-)) and thus is not a periodic point
of prime period 2n—1. Thus f has no periodic points of prime period 2n—1.

Lemma 2: A continuous function f : I — [ exists such that f has a
periodic point of prime period 2¥(2n+1) but not one of prime period 2¥(2n—
1) for each n, k € Z™.

Proof: We will introduce a way of “doubling” a continuous function f :
I — I. Given such an f, define the doubling, D(f), of f as follows:



24+ 1f(32) z €0,3]
Flz)=4@2-32)(3f()+3) ze[5 3]
:1;—% xe[%,l]

F'is continuous and from I to I since f has these properties. An impor-
tant property to note is that if z € [0, 1] then F(z) = 2 + 1 f(3z) € [3,1].
Then F2(z) = % f(3z), and thus if f(a) = b, then F2(%) = 2. I claim that
f has a periodic point of prime period n if and only if D(f) has a periodic
point of prime period 2n:

If f has a periodic point of prime period n, D(f) has a periodic point
of prime period 2n by the properties of F' we have just shown. Suppose,
conversely D(f) has a periodic point p of prime period 2n (n € Z). Since
F([0,1]) € [2,1] and F([Z,1]) = [0,3], and F is monotonically decreasing
on [%, 2], we have two options: there can be at most one fixed point in [3, 2],
or else the orbit of p alternates between points in [0, 2] and [2,0]. Thus we
have a subsequence of the orbit of p, call this p; (starting with ¢ = 0), such
that F2(p;) = pis1, pn = po (F?*(po) = po, and also p, is the first p; to
equal pg since pg has prime period 2n for F'). Then the point 3py has an
orbit 3p; under f, and thus has a prime period of n.

Thus to create a continuous function F' : I — I with a point of prime
period 2¥(2n+1) but not one of prime period 2¥(2n—1), we need only select
a function f : I — I as above with a point of prime period 2n + 1 but not

one of prime period 2n — 1 and take F' = DF(f).

Lemma 3: A continuous function f : I — [ exists such that f has a
periodic point of prime period 2" but not one of prime period 2"*! for
necZt.

Proof: First we want to construct a function with a fixed point (prime
period 1) but no periodic points of prime period 2. A function that evidently
has this property is f(z) = z, since every point is fixed. Then we can use
the doubling construction from the previous lemma to construct functions
with periodic points of prime period 2™ but not periodic points of prime
period 27t

Lemma 4: A continuous function f : I — [ exists such that f has a
periodic point of prime period 3-2" but not one of prime period (2m—1)2"1
for each n € Z* and any m € Z*.



Proof: First we want to construct a function with a periodic point of prime
period 6 = 2-3 but no periodic points of odd period (greater than 1). Define
f 1 — 1 as follows:

f has a periodic point of prime period 3 (the point is = 0). Now con-
sider F'= D(f). F has a periodic point of prime period 6. By previous logic,
if F' has a periodic point it must be either of even period or a fixed point.
Thus F' has no periodic points of odd period. To produce functions with pe-
riodic points of prime period 3-2" but none of prime periods (2m —1)-2"1
we need only take D"~ 1(F).

(Note: it is not immediately evident why the last lemma must be as
stated. The reason why this is the final case is that for each of the previous
three lemmas there is a well defined number “immediately preceding” the
number in question in the defined ordering; that is, a number a immediately
precedes b if a < b and ¢ < b — ¢ = a or ¢ < a. There is no number
immediately preceding 3 - 2" for n € Z*. Thus if a continuous function f
on the interval has a periodic point of prime period 3 - 2", in order for it to
have no periodic points of prime period a < 3 - 2", it is necessary that is it
have no periodic points of prime period (2m — 1) - 27! for any m € Z™,
as opposed to the other three cases in which since there is an immediately
preceding number, we only have to prove the function has no periodic points
with a prime period equal to this immediately preceding number.)



