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The goal of this paper is to prove Sarkovskii’s theorem and its con­
verse, important results in the study of one­dimensional dynamical systems. 
Sarkovskii’s theorem is important because its hypothesis is very easy to sat­
isfy, and yet it provides an interesting conclusion about the periodic points 
of functions. Furthermore, in proving the converse, we see a number of in­
teresting examples of one­dimensional dynamical systems that help to guide 
our intuition. 

We first need a brief piece of preliminary notation and then we can state 
and prove Sarkovskii’s theorem and converse. 

Given the following sequence: 

3, 5, 7, . . . , 2 3, 2 5, . . . , 22 3, 22 5, . . . , 2n 3, 2n 5, . . . , 23 , 22 , 2, 1· · · · · · 

We define an ordering on the natural numbers by a > b if a appears 
before b in the above sequence. 

Sarkovskii’s Theorem: Suppose f : R R is continuous. Suppose f→
has a periodic point of prime period k. If k > l in the previously defined 
ordering, then f also has a periodic point of prime period l. 

We have three main cases to prove: f has a periodic point q where in 
one case q has odd prime period, in another q has a prime period of 2m for 
some m ∈ Z+, and in the last q has a prime period of p · 2m for p odd and 
1 ≤ m. For a proof of the first two cases, see An Introduction to Chaotic 
Dynamical Systems by Robert Devaney. 

In this paper, we will prove the case where f has a periodic point with 
prime period p · 2m for p odd and 1 ≤ m given the case for prime period p 
with p odd and the case for prime period 2a . 
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Proof: Suppose that f has a periodic point with prime period p · 2m for 
p odd and 1 ≤ m. Then f2m 

has a periodic point with prime period p, and 
by the odd p case of Sarkovskii’s theorem it has periodic points with prime 
period q · 2a for all odd natural numbers q and whole numbers a such that 
q > p or a ≥ 1. Thus f has periodic points of prime period q · 2a for all 
odd natural numbers q and whole numbers a such that q > p or a > m. f 
must thus have a periodic point of prime period 2m+1 , and thus by the 2a 

case of Sarkovskii’s theorem it also has periodic points of prime period 2a 

for 0 ≤ a ≤ m. 

Converse of Sarkovskii’s Theorem: If k > l in the previously defined 
ordering, then there exists a continuous function f : R R with a periodic→ 
point of prime period l but none periodic points of prime period k. 

We are free to instead find functions f : I I, with I = [0, 1] that have→
this property as they can easily be extended to the real numbers. I (“the 
interval”) will continue to be defined as it is here throughout the rest of the 
paper. 

The converse case can be reduced to four lemmas by observing the fol­
lowing: 

If a continuous function from the interval to itself has no periodic points 
of prime period b then it has no periodic points of prime period a ¿ b (in 
the above ordering), since if it did, then Sarkovskii’s theorem would imply 
that it had a periodic point of prime period b. Thus we only need to prove 
the following: 

Lemma 1: A continuous function f : I I exists such that f has a→ 
periodic point of prime period 2n+1 but not one of prime period 2n− 1 for 
each n ∈ Z+ . 

Proof: Define f : I I as follows:→ 

f = 

⎧ ⎪⎪⎪⎪⎨ ⎪⎪⎪⎪⎩


1 + nx x ∈ [0, 1 ],2 2n 
1 11 + 2

1 
n − x x ∈ [2n , 2 ], 

1 + 1 + 2
1 
n − 2x x ∈ [1 n+1 ],2 ,2 2n 

1− x x ∈ [n+1 
2n , 1].


f is continuous by definition, and I claim 0 is part of a 2n + 1 cycle. I 
claim f i(0) has values as follows: 
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⎧ ⎪⎨ ⎪⎩


0 i = 0, 
1 1 i 1 1f i(0) = 
2 − 2n [2 ](∈ [2n , 2 ]) i odd 

i1 + 1 [2 ](∈ [n+1 , 1]) i even, i = 0.2 2n 2n �

for 0 ≤ i ≤ 2n and f2n+1(0) = 0, where [x] is the greatest integer less 
than or equal to x. This can be seen by induction: f(0) = 1 

2 , thus the n 
odd case is true for i = 1. Also, f(1 

2) = 1 + 1 , thus the n even case is 2 2n 
true for i = 2. Now we show the inductive cases of the n even and n odd 
cases. Using the definition of f , i odd → f i+2(0) = 1 − (1 + 2

1 
n − f i(0)) = 

1 = 1 1 i+2 1f i(0)− 2 − 2n [ 2 ]. Similarly, i even → f i+2(0) = 1+ 2n − (1− f i(0)) = 2n 
1 = 1 + 1 [ i+2f i(0) + 2 ].2n 2 2n 

Now we must show that f has no cycles of prime period 2n − 1. For 
this discussion, assume a is an integer, 0 ≤ a < n. Since f is piecewise 

1 1linear, we can say that f2a+1([ a a+1 ]) = [2 , 1] and f2(n−a)([1 + a 
2n , 2n 2 2n , 2 + 

1a+1 ]) = [2 , 1] using our previous knowledge of the orbit of 0. We can also 2n 
say that f2a([1 1 a 

2 , 1]) = [0, 1 + a ]. Thus 2 , 1]) = [2 − 2n , 1] and f2a−1([1
1 a+1 ]) = 

2 2n 
f2n−1([ a a+1 ]) = [2 − n−a−1 , 1] = [a+1 , 1] and f2n−1([1 2n , 2n 

1
2n 2n 2 + 2

a
n , 2 + 2n 

[0, 1 + a ]. Thus f2n−1 has no fixed points on [0, 1 ] ∪ [1 + 1 , 1] (since we 2 2n 2 2 2n 
iknow f2n−1(2n ) =� i for all integers i, 0 ≤ i ≤ 2n).2n 

1 1 + 1 ].We must now consider possible fixed points for f2n−1 on [2 , 2 2n 
1 + 1f2n−1([1 

2 , ]) = I, and thus f2n−1 must have at least one fixed point on2 2n 
1[2 , 1 1 + 1 ]. But, f is monotonically decreasing on [2n , 1], and thus by using 2 2n 

1 1 + 1 ]knowledge of the orbit of 0 (which tells us the successive images of [2 , 2 2n 
under f) we know that f2n−1 is monotonically decreasing on [2 , 1 1 + 1 ] and2 2n 
thus there is at maximum one fixed point for f2n−1 in this interval, which 
must also be a fixed point for f (f must have at least one fixed point in 
[2 , ] since f([1 1 1 + 1 ]) and thus is not a periodic point 1 1 + 1

2 , 1 + 1 ]) ⊃ [2 ,2 2n 2 2n 2 2n 
of prime period 2n−1. Thus f has no periodic points of prime period 2n−1. 

Lemma 2: A continuous function f : I I exists such that f has a →
periodic point of prime period 2k(2n+1) but not one of prime period 2k(2n−
1) for each n, k ∈ Z+ . 

Proof: We will introduce a way of “doubling” a continuous function f : 
I I. Given such an f , define the doubling, D(f), of f as follows: → 
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F is continuous and from I to I since f has these properties. An impor­

, 1].


]

, 1]


f has a periodic point of prime period n if and only if D(f) has a periodic 
point of prime period 2n: 

If f has a periodic point of prime period n, D(f) has a periodic point 
of prime period 2n by the properties of F we have just shown. Suppose, 

],], we have two options: there can be at most one fixed point in [

or else the orbit of p alternates between points in [0, ] and [ , 0]. Thus we 
have a subsequence of the orbit of p, call this pi (starting with i = 0), such 
that F 2(pi) = pi+1, pn = p0 (F 2n(p0) = p0, and also pn is the first pi to 
equal p0 since p0 has prime period 2n for F ). Then the point 3p0 has an 
orbit 3pi under f , and thus has a prime period of n. 

Thus to create a continuous function F : I I with a point of prime →
period 2k(2n+1) but not one of prime period 2k(2n− 1), we need only select 
a function f : I I as above with a point of prime period 2n + 1 but not →
one of prime period 2n − 1 and take F = Dk(f). 

Lemma 3: A continuous function f : I I exists such that f has a →
periodic point of prime period 2n but not one of prime period 2n+1 for 
n ∈ Z+ . 

Proof: First we want to construct a function with a fixed point (prime 
period 1) but no periodic points of prime period 2. A function that evidently 
has this property is f(x) = x, since every point is fixed. Then we can use 
the doubling construction from the previous lemma to construct functions 
with periodic points of prime period 2n but not periodic points of prime 
period 2n+1 . 

Lemma 4: A continuous function f : I I exists such that f has a →
periodic point of prime period 3·2n but not one of prime period (2m−1)2n−1 

for each n ∈ Z+ and any m ∈ Z+ . 

+

=


f(1) + 

Then F 2(x) = = 

f(3x) 

[ , 1] and F ([ , 1]) = [0, 

+


x −


F (x)
= 

F ([0, 
,on
[


2f(3x) ∈ [
I claim that 

conversely D(f) has a periodic point p of prime period 2n (n ∈ Z). Since 
1]) ⊂ ], and F is monotonically decreasing 22 
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=] then F (x)


) x ∈ [

[x ∈


(2 − 3x)(
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⎪⎩ 
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3tant property to note is that if x ∈ [0, 

f(3x), and thus if f(a)1 

3

⎧ ⎪⎨ 
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Proof: First we want to construct a function with a periodic point of prime 
period 6 = 3 but no periodic points of odd period (greater than 1). Define 2 · 
f : I I as follows: → 

1 

f(x) = 
+ x 

1 

x ∈ [0, 1 ]2 2
1−2(x 2) + 1 x ∈ [2 , 1]− 

f has a periodic point of prime period 3 (the point is x = 0). Now con­
sider F = D(f). F has a periodic point of prime period 6. By previous logic, 
if F has a periodic point it must be either of even period or a fixed point. 
Thus F has no periodic points of odd period. To produce functions with pe­
riodic points of prime period 3 2n but none of prime periods (2m− 1) 2n−1 · · 
we need only take Dn−1(F ). 

(Note: it is not immediately evident why the last lemma must be as 
stated. The reason why this is the final case is that for each of the previous 
three lemmas there is a well defined number “immediately preceding” the 
number in question in the defined ordering; that is, a number a immediately 
precedes b if a < b and c < b c = a or c < a. There is no number →
immediately preceding 3 · 2n for n ∈ Z+ . Thus if a continuous function f 
on the interval has a periodic point of prime period 3 · 2n, in order for it to 
have no periodic points of prime period a < 3 2n, it is necessary that is it · 
have no periodic points of prime period (2m − 1) 2n−1 for any m ∈ Z+ ,· 
as opposed to the other three cases in which since there is an immediately 
preceding number, we only have to prove the function has no periodic points 
with a prime period equal to this immediately preceding number.) 
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